GAP ESTIMATES OF THE SPECTRUM OF HILL'S EQUATION AND ACTION VARIABLES FOR KdV

T. KAPPELER AND B. MITYAGIN

ABSTRACT. Consider the Schrödinger equation $-y'' + Vy = \lambda y$ for a potential V of period 1 in the weighted Sobolev space $(N \in \mathbb{Z}_{\geq 0}, \ \omega \in \mathbb{R}_{\geq 0})$

$$H^{N,\omega}(S^1;\mathbb{C}):=\{f(x)=\sum_{k=-\infty}^{\infty}\ \hat{f}(k)e^{i2\pi kx}\ \bigg|\ \|\ f\ \|_{N,\omega}<\infty\}$$

where $\hat{f}(k)$ $(k \in \mathbb{Z})$ denote the Fourier coefficients of f when considered as a function of period 1,

$$|| f ||_{N,\omega} := \left(\sum_{k} (1+|k|)^{2N} e^{2\omega|k|} || \hat{f}(k)|^2 \right)^{1/2} < \infty,$$

and where S^1 is the circle of length 1. Denote by $\lambda_k \equiv \lambda_k(V)$ $(k \geq 0)$ the periodic eigenvalues of $-\frac{d^2}{dx^2} + V$ when considered on the interval [0,2], with multiplicities and ordered so that $Re\lambda_j \leq Re\lambda_{j+1}$ $(j \geq 0)$. We prove the following result.

Theorem. For any bounded set $\mathcal{B} \subseteq H^{N,\omega}(S^1;\mathbb{C})$, there exist $n_0 \geq 1$ and $M \geq 1$ so that for $k \geq n_0$ and $V \in \mathcal{B}$, the eigenvalues $\lambda_{2k}, \lambda_{2k-1}$ are isolated $\begin{array}{l} \textit{pairs, satisfying (with } \{\lambda_{2k}, \lambda_{2k-1}\} = \{\lambda_k^+, \lambda_k^-\}) \\ (\text{i) } \sum_{k \geq n_0} (1+k)^{2N} e^{2\omega k} |\lambda_k^+ - \lambda_k^-|^2 \leq M, \end{array}$

(i)
$$\sum_{k > -\infty} (1+k)^{2N} e^{2\omega k} |\lambda_k^+ - \lambda_k^-|^2 \le M$$
,

(ii)
$$\sum_{k \ge n_0} (1+k)^{2N+1} e^{2\omega k} \left| (\lambda_k^+ - \lambda_k^-) - 2\sqrt{\hat{V}(k)\hat{V}(-k)} \right|^2 \le M.$$

1. Introduction and summary of the results

The Korteweg-deVries equation (KdV) on the circle

(1.1)
$$\partial_t U(x,t) = -\partial_x^3 U(x,t) + 6U(x,t)\partial_x U(x,t)$$

is a completely integrable Hamiltonian system of infinite dimension. We choose as its phase space the Sobolev space $H^{N,\omega}(S^1)$, where S^1 is the circle of length $1, \omega \in \mathbb{R}_{>0}$ and $N \in \mathbb{Z}_{>0}$. The Poisson structure is the one proposed by Gardner,

$$\{F_1, F_2\}_G := \int_{S^1} \frac{\partial F_1}{\partial V(x)} \frac{d}{dx} \frac{\partial F_2}{\partial V(x)} dx,$$

where F_1 and F_2 are C^1 functionals on $H^{N,\omega}(S^1)$ and $\frac{\partial F}{\partial V(x)}$ denotes the L^2 -gradient of F. The Gardner bracket is degenerate. Its symplectic leaves are given by

Received by the editors December 5, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 58F19, 58F07, 35Q35.

 $H_c^{N,\omega}(S^1) := c + H_0^{N,\omega}(S^1)$ with $c \in \mathbb{R}$, where

$$H_0^{N,\omega}(S^1) := \{ f \in H^{N,\omega}(S^1) | \int_{S^1} f dx = 0 \}.$$

Also we introduce the following weighted l^2 -spaces:

$$l_{N+\frac{1}{2},\omega}^2(\mathbb{N};\mathbb{R}^2) := \{(x,y) = (x_j,y_j)_{j \ge 1} | \sum_{j \ge 1} j^{2N+1} e^{2\omega j} (x_j^2 + y_j^2) < \infty \}.$$

In section 3 we prove the following result.

Theorem 1. Let $N \in \mathbb{Z}_{\geq 0}$ and $\omega \in \mathbb{R}_{\geq 0}$. Then there exists a map

$$\Lambda^{(N,\omega)}: H_0^{N,\omega}(S^1) \to l_{N+\frac{1}{2},\omega}^2(N;\mathbb{R}^2)$$

with the following properties:

- (1) $\Lambda^{(N,\omega)}$ is a diffeomorphism;
- (2) $\Lambda^{(N,\omega)}$ and $(\Lambda^{(N,\omega)})^{-1}$ are real analytic;
- (3) the variables $(x_j^2 + y_j^2)/2$ associated to $\Lambda^{(N,\omega)}(V) = (x_j(V), y_j(V))_{j\geq 1}$ are action coordinates of KdV and its entire hierarchy.

We refer to $(x_j(V), y_j(V))_{j\geq 1}$ as Birkhoff coordinates of KdV (and its hierarchy). The map, associating to V Birkhoff coordinates, is referred to as Birkhoff map, and can be thought of as a nonlinear Fourier transform. Clearly, the Fourier transform \mathcal{F} establishes a linear isomorphism between $H_0^{N,\omega}(S^1)$ and $l_{N,\omega}^2(\mathbb{N};\mathbb{R}^2), \mathcal{F}(V) = (Re\hat{V}(k), Im\hat{V}(k))_{k\geq 1}$, and Theorem 1 is an instance of (probably) many properties Fourier transform and Birkhoff map have in common. Theorem 1 has already been established in the case $\omega = 0$ [BKM1] (cf. also [Ka], [BBGK]). In order to prove that $\Lambda^{(N,\omega)}$ can be chosen as the restriction of Λ to $H_0^{N,\omega}$, one has to derive asymptotic estimates for the periodic eigenvalues of the Schrödinger operator $L := -\frac{d^2}{dx^2} + V$ for V in $H_0^{N,\omega}(S^1;\mathbb{C})$ considered on the interval [0,2]. The periodic spectrum of L is discrete. Denote it by $(\lambda_k = \lambda_k(V))_{k\geq 0}$ (with multiplicities), where the λ_k 's are ordered in such a way that $Re\lambda_0 \leq Re\lambda_1 \leq \ldots$ and, in case $Re(\lambda_k) = Re(\lambda_{k+1})$, $Im\lambda_k \leq Im\lambda_{k+1}$. For k sufficiently large, the eigenvalues come in isolated pairs $\{\lambda_{2k}, \lambda_{2k-1}\}$. The main result of this paper is the following one, proved in section 2:

Theorem 2. Let $\mathcal{B} \subseteq H^{N,\omega}(S^1;\mathbb{C})$ be a bounded set of potentials $(N \in \mathbb{Z}_{\geq 0}, \ \omega \in \mathbb{R}_{>0})$. Then there exists $n_0 \geq 1$ such that

$$\sup_{V \in \mathcal{B}} \sum_{k > n_0} (1+k)^{2N+1} e^{2\omega k} \left| \lambda_k^+(V) - \lambda_k^-(V) - 2\sqrt{\hat{\hat{V}}(k)\hat{\hat{V}}(-k)} \right|^2 < \infty,$$

where $\{\lambda_k^+, \lambda_k^-\} = \{\lambda_{2k}, \lambda_{2k-1}\}$ (cf. Theorem 2.10 for the indexing λ_k^+, λ_k^- of the numbers $\lambda_{2k}, \lambda_{2k-1}$).

As a consequence of Theorem 2 one obtains

Corollary 3. For a real valued potential $V \in L^2(S^1)$ to be an element of $H^{N,\omega}(S^1)$ it is necessary and sufficient that

$$\sum_{k=1}^{\infty} (1+k)^{2N} e^{2\omega k} (\lambda_{2k}(V) - \lambda_{2k-1}(V))^2 < \infty.$$

In the case $\omega = 0$, Theorem 2 and Corollary 3 have been established by Marčenko [Ma] by different methods which might, however, not be adaptable to the case $\omega > 0$.

Theorem 1 can be used to prove by the 'inverse scattering method' that the Korteweg-deVries equation (1.1) is well-posed on the circle. To simplify the wording of the statement we restrict ourselves to the case where the initial data V is in $H_0^{N,\omega}(S^1)$ (cf. [BKM2] in case V has nonzero average).

Corollary 4. Let $N \in \mathbb{Z}_{\geq 0}$ and $\omega \in \mathbb{R}_{\geq 0}$. There exists a solution operator $S : H_0^{N,\omega}(S^1) \to C(\mathbb{R}; H_0^{N,\omega}(S^1))$ of (1.1) with the following properties:

(i) Given V_1, V_2 in $H_0^{N,\omega}(S^1)$, there exists M > 0 so that for any $t \in \mathbb{R}$

$$\| \mathcal{S}(V_1)(t) - \mathcal{S}(V_2)(t) \|_{H_0^{N,\omega}(S^1)} \le M(1+|t|) \| V_1 - V_2 \|_{H_0^{N,\omega}(S^1)}.$$

(ii) For any
$$0 < T < \infty$$
, $S: H_0^{N,\omega}(S^1) \to C([-T,T]; H_0^{N,\omega}(S^1))$ is real analytic.

Proof. The case $\omega=0,\ N=0$ can be treated as in [BKM2] (cf. also [Bo]). The same proof works for this more general situation. In fact, the case $\omega=0,\ N\geq 1$ or $\omega>0,\ N\geq 0$ is somewhat easier, as the frequencies of the KdV Hamiltonian are easily seen to be real analytic in these cases.

Remark. Results similar to the one presented for KdV hold for any of the equations in the KdV hierarchy.

2. Proof of Theorem 2

In this section, we prove Theorem 2, stated in the introduction. First let us introduce some more notation.

Definition. $w := (w(k))_{k \in \mathbb{Z}}$ is said to be a weight if

- (i) $w(k) \ge 1 \ (k \in \mathbb{Z});$
- (ii) there exists $M_w \ge 1$ such that $w(k) \le M_w w(k-j) w(j)$ $(k, j \in \mathbb{Z})$.

Condition (ii) is referred to as the submultiplicative property of a weight. Most frequently we will use the weight

(2.1)
$$w(k) := (1 + |\frac{k}{2}|)^N e^{\frac{\omega}{2}|k|},$$

where $N \in \mathbb{Z}_{\geq 0}$ and $\omega \in \mathbb{R}_{\geq 0}$. In that case, one can choose $M_w = 1$ in condition (ii) of the above definition. The reason for choosing $\frac{\omega}{2}$ rather than ω in (2.1) follows from the observation that

$$V = \sum_{k} \hat{\hat{V}}(k)e^{i2\pi kx} = \sum_{k} \hat{V}(2k)e^{i\pi(2k)x}$$

for $V \in H^{N,\omega}(S^1;\mathbb{C})$, with $(\hat{V}(k))_{k\in\mathbb{Z}}$ denoting the Fourier coefficients of V considered as a function of period 2 and thus

$$\parallel V \parallel_{N,\omega}^2 = \sum_k (1+|k|)^{2N} \ e^{2\omega|k|} | \ \hat{\hat{V}}(k)|^2 = \sum_k \left((1+\frac{|k|}{2})^N \ e^{\frac{\omega}{2}|k|} \right)^2 \ |\hat{V}(k)|^2 \ .$$

For $K \subseteq \mathbb{Z}$ and a weight w denote by $l_w(K)$ the complex Hilbert space $l_w^2(K) \equiv l_w^2(K;\mathbb{C})$,

$$l_w^2(K) := \{ (a(k))_{k \in K} \mid \| a \|_w < \infty \}$$

where

$$\| a \|_{w} \equiv \| a \|_{l_{w}^{2}(K)} := \left(\sum_{k \in K} w(k)^{2} |a(k)|^{2} \right)^{1/2}.$$

Most frequently, we will use for K the set \mathbb{Z} or $\mathbb{Z}(n) := \mathbb{Z} \setminus \{\pm n\}$. If necessary for clarity, we will sometimes write a_K for a sequence $(a(k))_{k \in K} \in l_w^2(K)$.

For a linear operator $A: l_{w_1}^2(K_1) \to l_{w_2}^2(K_2)$ we denote by A(k,j) its matrix elements

$$(Aa)(k) := \sum_{j \in K_1} A(k, j)a(j) \quad (k \in K_2).$$

Definition. $S: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$ is defined by (Sa)(k) := a(k+1) $(k \in \mathbb{Z})$. S is called the shift operator. The restriction of S to $l_w^2(K)$ with values in $l_{Sw}^2(K)$ is denoted by S as well, and $S^n = S \circ \cdots \circ S$ denotes the nth iterate of S. Notice that

(2.2)
$$\| \mathcal{S}^n a \|_{l_{\mathcal{S}^n w}^2(K)}^2 = \sum_{k \in K} (\mathcal{S}^n w)(k)^2 \left| (\mathcal{S}^n a)(k) \right|^2$$

$$= \sum_{k \in K} w(k+n)^2 \left| a(k+n) \right|^2 \le \| a \|_{l_w^2(\mathbb{Z})}^2 .$$

Definition. $\mathcal{J}: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$ is the involution given by

$$(\mathcal{J}a)(k) := a(-k).$$

To prove Theorem 2, it suffices to consider potentials $V \in H_0^{N,\omega}(S^1)$ (where S^1 is the circle of unit length), as adding a constant c to V simply shifts the periodic spectrum of $-\frac{d^2}{dx^2} + V$ by c.

spectrum of $-\frac{d^2}{dx^2} + V$ by c. Express $-\frac{d^2}{dx^2} + V - \lambda$, acting on functions periodic of period 2, in Fourier space, as $A: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$, with

$$A(k,j) = \pi^2 k^2 \delta_{kj} + \hat{V}(k-j).$$

Recall that $\hat{V}(0) = \frac{1}{2} \int_0^2 V(x) dx = 0$, as $V \in H_0^{N,\omega}(S^1;\mathbb{C})$, and that $(\hat{V}(k))_{k \in \mathbb{Z}}$ denote the Fourier coefficients of V when considered as functions of period 2.

To analyze the eigenvalues λ_{2n} , λ_{2n-1} near $n^2\pi^2$ $(n \ge 1)$, write $\lambda = n^2\pi^2 + z$. Writing $l^2(\mathbb{Z})$ as a direct sum $l^2(\mathbb{Z}) = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{Z}(n)$, $a = (a(-n), a(n), a_{\mathbb{Z}(n)})$ $(\mathbb{Z}(n) := \mathbb{Z} \setminus \{\pm n\})$, we see that $A - \lambda$ is of the form

$$(2.3) \qquad \begin{pmatrix} ((A-\lambda)(k,-n))_{k\in\mathbb{Z}} & \left((A-\lambda)(k,n)\right)_{k\in\mathbb{Z}} & \left((A-\lambda)(k,j)\right)_{\substack{k\in\mathbb{Z}\\j\in\mathbb{Z}(n)}} \end{pmatrix}$$

$$= \begin{pmatrix} -z & \hat{V}(-2n) & (\mathcal{S}^n \mathcal{J}\hat{V})_{\mathbb{Z}(n)}^T \\ \hat{V}(2n) & -z & (\mathcal{S}^{-n} \mathcal{J}\hat{V})_{\mathbb{Z}(n)}^T \\ (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)} & (\mathcal{S}^{-n} \hat{V})_{\mathbb{Z}(n)} & B_n - z \end{pmatrix},$$

where the superscript T denotes the transpose and where $B_n: l^2(\mathbb{Z}(n)) \to l^2(\mathbb{Z}(n))$ is given by

(2.4)
$$B_n := A_n - \pi^2 n^2 I d_n, A_n := (A_n(j,k))_{j,k \in \mathbb{Z}(n)}.$$

The (possibly) complex number $\lambda = n^2\pi^2 + z$ is a periodic eigenvalue for $-\frac{d^2}{dx^2} + V$ if there exists $a = (a(k))_{k \in \mathbb{Z}} \in l^2(\mathbb{Z})$ such that

$$(A - \lambda)a = 0.$$

With x := a(-n), y := a(n), this equation can be written as a system of three equations:

$$(2.5) -zx + \hat{V}(-2n)y + \langle \mathcal{S}^n \mathcal{J} \hat{V}, a_{\mathbb{Z}(n)} \rangle = 0,$$

(2.6)
$$\hat{V}(2n)x - zy + \langle \mathcal{S}^{-n}\mathcal{J}\hat{V}, a_{\mathbb{Z}(n)} \rangle = 0,$$

$$(2.7) (S^n \hat{V})_{\mathbb{Z}(n)} x + (S^{-n} \hat{V})_{\mathbb{Z}(n)} y + (B_n - z) a_{\mathbb{Z}(n)} = 0.$$

Here

(2.8)
$$\langle a, b \rangle \equiv \langle a, b \rangle_{\mathbb{Z}(n)} = \sum_{k \in \mathbb{Z}(n)} a(k)b(k)$$

(no complex conjugation). To solve (2.7) for $a_{\mathbb{Z}(n)}$ we need to analyze the operator

$$z - B_n : l^2(\mathbb{Z}(n)) \to l^2(\mathbb{Z}(n)).$$

Denote by B_n^I the diagonal part of B_n ,

$$B_n^I(k,j) = \pi^2(k^2 - n^2)\delta_{kj}$$
 $(k, j \in \mathbb{Z}(n))$

and define $B_n^{II}:=B_n-B_n^I$. Notice that, with $M\geq 10$, for any $n\geq \frac{M}{2}$ and $|z|\leq M$, $z-B_n^I$ is invertible. Denote by $\parallel V\parallel$ the norm of V in $L^2(S^1)$, and introduce

$$(2.9) T_n := B_n^{II} (z - B_n^I)^{-1} : l^2(\mathbb{Z}(n)) \to l^2(\mathbb{Z}(n)),$$

(2.10)
$$n_0 := \max(\frac{M+1}{2}, ||V||), \quad M \ge 10.$$

Lemma 2.1. For $n \ge n_0$ and $|z| \le M$,

$$(2.11) ||T_n||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} \le \frac{||V||}{5n} \le \frac{1}{5}; ||(z - B_n^I)^{-1}||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} \le \frac{1}{5n};$$

(2.12)
$$z - B_n$$
 is invertible and $|||(z - B_n)^{-1}|||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} \le \frac{1}{4n}$.

Remark. The conditions in Lemma 2.1 (and subsequent lemmas) are only assumed to insure that the quantities involved are well defined.

Proof. To obtain estimates (2.11) notice that $|||T_n|||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} \leq ||T_n||_{HS}$, where $||T_n||_{HS}$ denotes the Hilbert-Schmidt norm of T_n :

Similarly,

$$|||(z - B_n^I)^{-1}|||_{\mathcal{L}(l^2(\mathbb{Z}(n)))}^2 \le ||(z - B_n^I)^{-1}||_{HS}^2$$
$$\le \sum_{k \ne + n} \frac{1}{|\pi^2|k^2 - n^2| - M|^2} \le \frac{1}{30n^2}.$$

To prove (2.12), write

$$z - B_n = z - B_n^I - B_n^{II} = (Id_n - B_n^{II}(z - B_n^I)^{-1})(z - B_n^I) = (Id_n - T_n)(z - B_n^I).$$
Then $(z - B_n)^{-1} = (z - B_n^I)^{-1}(Id_n - T_n)^{-1}$ and
$$|||(z - B_n)^{-1}|||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} \le \frac{1}{5n} \sum_{k>0} ||T_n||^k \le \frac{1}{5n} \frac{1}{1 - \frac{1}{5}} = \frac{1}{4n}. \quad \Box$$

In view of Lemma 2.1, (2.7) can be solved for $a_{\mathbb{Z}(n)}$, if $n \geq n_0$ and $|z| \leq M$:

$$a_{\mathbb{Z}(n)} = (z - B_n)^{-1} (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)} x + (z - B_n)^{-1} (\mathcal{S}^{-n} \hat{V})_{\mathbb{Z}(n)} y.$$

If this is substituted into (2.5) and (2.6), we obtain (with $B_{-n} := B_n$)

(2.14)
$$\begin{pmatrix} -z + \alpha(-n, z) & \hat{V}(-2n) + \beta(-n, z) \\ \hat{V}(2n) + \beta(n, z) & -z + \alpha(n, z) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

where

(2.15)
$$\alpha(n,z) := \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n)^{-1} (\mathcal{S}^{-n} \hat{V})_{\mathbb{Z}(n)} \rangle$$

and

(2.16)
$$\beta(n,z) := \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n)^{-1} (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)} \rangle.$$

To analyze (2.14) we begin by investigating $\alpha(n, z)$.

Lemma 2.2. For $n \geq n_0$ and $|z| \leq M$,

$$\alpha(n,z) = \alpha(-n,z)$$
.

Proof. By Lemma 2.3 (iii) below, $(z - B_n)^{-1}(k, j) = (z - B_n)^{-1}(-j, -k)$ and thus

$$\alpha(n,z) = \sum_{\substack{k,j \neq \pm n \\ k,j \neq \pm n}} \hat{V}(n-k)(z-B_n)^{-1}(k,j)\hat{V}(j-n)$$

$$= \sum_{\substack{k,j \neq \pm n \\ k',j' \neq \pm n}} \hat{V}(-k-(-n))(z-B_n)^{-1}(-j,-k)\hat{V}((-n)-(-j))$$

$$= \sum_{\substack{k',j' \neq \pm n \\ a(-n,z).}} \hat{V}((-n)-k')(z-B_n)^{-1}(k',j')\hat{V}(j'-(-n))$$

Lemma 2.3. For $n \geq n_0$ and $j, k \in \mathbb{Z}(n)$,

- (i) $A_n(k,j) = A_n(-j,-k),$ (ii) $(A_n \lambda)^{-1}(k,j) = (A_n \lambda)^{-1}(-j,-k),$ (iii) $(z B_n)^{-1}(k,j) = (z B_n)^{-1}(-j,-k).$

Proof. (i) Recall that, for $k, j \in \mathbb{Z}(n)$, $A_n(k, j) = k^2 \pi^2 \delta_{kj} + \hat{V}(k-j)$. Therefore $A_n(k,j) = (-k)^2 \pi^2 \delta_{(-k)(-j)} + \hat{V}((-j) - (-k)) = A_n(-j, -k).$

(ii) is a straightforward verification, and (iii) follows from (ii).
$$\Box$$

By Lemma 2.2, the system of equations (2.14) with $n \geq n_0$ has a nontrivial solution $\binom{x}{y}$ for some $|z| \leq M$, if there exists $z \in \mathbb{C}$, $|z| \leq M$, such that

$$(2.17) (z - \alpha(n, z))^2 - (\hat{V}(-2n) + \beta(-n, z))(\hat{V}(2n) + \beta(n, z)) = 0.$$

Equation (2.17) is solved in two steps:

(2.18)
$$z_n = \alpha(n, z_n) + \zeta \quad (\zeta \text{ in } \mathcal{D}_{\frac{M}{2}} := \{ \zeta \in \mathbb{C} \mid |\zeta| < \frac{M}{2} \})$$

and, with $z(\zeta_n) := z_n(\zeta_n)$ given by (2.18),

(2.19)
$$\zeta_n^2 - (\hat{V}(-2n) + \beta(-n, z(\zeta_n))) (\hat{V}(2n) + \beta(n, z(\zeta_n))) = 0.$$

Let us first discuss equation (2.18). To solve it, we use the contractive mapping principle. For that purpose, we need

Lemma 2.4. For |z| < M and $n > n_0$.

- $\begin{array}{ll} \text{(i)} \ |\alpha(n,z)| \leq \frac{1}{4n} \parallel V \parallel^2, \\ \text{(ii)} \ |\frac{d}{dz}\alpha(n,z)| \leq \frac{1}{16n^2} \parallel V \parallel^2. \end{array}$

Proof. (i) By (2.12) of Lemma 2.1, for $n \ge n_0$ and $|z| \le M$,

$$|\alpha(n,z)| \le ||V|| |||(z-B_n)^{-1}||| ||V|| \le \frac{||V||^2}{4n}.$$

(ii) Notice that

$$\frac{d}{dz}\alpha(n,z) = \langle \mathcal{S}^{-n}\mathcal{J}\hat{V}, -(z-B_n)^{-2}\mathcal{S}^{-n}\hat{V}\rangle$$

and therefore

$$\left|\frac{d}{dz}\alpha(n,z)\right| \le \|V\| \||(z-B_n)^{-1}||^2 \|V\| \le \frac{\|V\|^2}{16n^2}.$$

Introduce

$$(2.20) n_1 := \max(n_0, ||V||^2)$$

Proposition 2.5. For $\zeta \in \mathcal{D}_{M/2}$ and $n \geq n_1$, the equation

$$z_n = \alpha(n, z_n) + \zeta$$

has a unique solution $z_n = z_n(\zeta)$ in \mathcal{D}_M , which depends analytically on $\zeta \in \mathcal{D}_{\frac{M}{2}}$.

Proof. By Lemma 2.4, since $n \geq n_1$,

$$|\alpha(n,z)| \le \frac{\parallel V \parallel^2}{4n} \le \frac{1}{4} \quad (z \in \bar{\mathcal{D}}_M).$$

Therefore, $F(z) \equiv F_{n,\zeta}(z) := \zeta + \alpha(n,z)$ defines a map $F: \bar{\mathcal{D}}_M \to \bar{\mathcal{D}}_M$ (use $|F(z)| \leq |\zeta| + |\alpha(n,z)| \leq \frac{M}{2} + \frac{1}{4} < M$ for $M \geq 10$). F is a contraction, as for any pair $z_1, z_2 \in \bar{\mathcal{D}}_M$

$$|F(z_1) - F(z_2)| \le \left(\sup_{|z| \le M} \left| \frac{d}{dz} \alpha(n, z) \right| \right) |z_1 - z_2|$$

$$\le \frac{1}{16n} \left(\frac{1}{n} \parallel V \parallel^2 \right) \cdot |z_1 - z_2| \le \frac{1}{n} \cdot \frac{1}{16} \cdot |z_1 - z_2| \le \frac{1}{2} |z_1 - z_2|.$$

Thus, for any $\zeta \in \mathcal{D}_{\frac{M}{2}}$ and $n \geq n_1$, F admits a unique fixed point $z_n = z_n(\zeta)$, and $z_n(\zeta)$ depends analytically on ζ .

It remains to consider (2.19), which requires an estimate of $\beta(\pm n, z)$. First we need some auxiliary results. In (2.9) we introduced the operator

$$T_n := B_n^{II} (z - B_n^I)^{-1} \in \mathcal{L}(l^2(\mathbb{Z}(n))).$$

This operator can also be viewed as an element in $\mathcal{L}\left(l_{\mathcal{S}^n w}^2(\mathbb{Z}(n))\right)$, where $w=(w(j))_{j\in\mathbb{Z}}$ is the weight $w(j):=(1+|\frac{j}{2}|)^N$ $e^{\frac{\omega}{2}|j|}$ and $(\mathcal{S}^n w)(j):=w(j+n)$. Denote by $W_n:l_{\mathcal{S}^n w}^2(\mathbb{Z}(n))\to l^2(\mathbb{Z}(n))$ the operator given by

$$(2.21) W_n(k,j) := w(k+n)\delta_{kj}.$$

Notice that W_n is an isometry. Therefore the operator norm of

$$\tilde{T}_n := W_n T_n W_n^{-1}$$

is given by

$$(2.23) |||\tilde{T}_n|||_{\mathcal{L}(l^2(\mathbb{Z}(n)))} = |||T_n|||_{\mathcal{L}(l^2_{S^n_w}(\mathbb{Z}(n)))}.$$

Lemma 2.6. For $n \ge n_0$ and $|z| \le M$

$$(2.24) |||T_n|||_{\mathcal{L}(l^2_{S^n w}(\mathbb{Z}(n)))} \leq \frac{||V||_{N,\omega}}{5n}.$$

Proof. In view of (2.23), it suffices to estimate the Hilbert Schmidt norm of \tilde{T}_n in $\mathcal{L}(l^2(\mathbb{Z}(n)))$. It follows from the submultiplicative property of the weight w (cf. the definition at the beginning of section 2) that

(2.25)
$$\frac{(\mathcal{S}^n w)(j)}{(\mathcal{S}^n w)(k)} \le w(j-k).$$

Therefore

$$\|\tilde{T}_n\|_{HS}^2 = \sum_{j,k \neq \pm n} \frac{|\mathcal{S}^n w(j)|^2}{|\mathcal{S}^n w(k)|^2} |\hat{V}(j-k)|^2 \frac{1}{|z-\pi^2(k^2-n^2)|^2}$$

$$\leq \sum_{j,k \neq \pm n} |w(j-k)|^2 |\hat{V}(j-k)|^2 \frac{1}{75} \frac{1}{(k-n)^2(k+n)^2}$$

$$\leq \frac{1}{75} \sum_i (|w(i)|\hat{V}(i)|^2 \sum_{j-i \neq \pm n} \frac{1}{((j-i)^2-n^2)^2})$$

$$\leq \|V\|_{N,\omega}^2 \frac{1}{30n^2},$$

where, for the last inequality, we argue in the same way as in the last steps of the inequality (2.13).

Let

(2.26)
$$n_2 := \max(n_1, ||V||_{N,\omega}) = \max(\frac{M+1}{2}, ||V||^2, ||V||_{N,\omega}).$$

Proposition 2.7. For $n \geq n_2$,

$$\Big(\sum_{n > n_2} (1 + \frac{n}{2})^{2N+2} e^{2\omega n} \sup_{|z| \le M} |\beta(\pm n, z)|^2\Big)^{1/2} \le ||V||_{N, \omega}^2 (1 + \frac{1}{8} ||V||_{N, \omega});$$

$$\left(\sum_{n>n_2} (1+\frac{n}{2})^{2N+4} e^{2\omega n} \sup_{|z| \le M} \left| \frac{d}{dz} \beta(\pm n, z) \right|^2 \right)^{1/2} \le \frac{1}{4} \| V \|_{N,\omega}^2 (1+\| V \|_{N,\omega}).$$

Proof. The estimates for $\beta(n,z)$ and $\beta(-n,z)$ are obtained in the same way. Let us concentrate on $\beta(n,z)$.

(i) Proof of (2.27): By Lemma 2.6 and (2.26), $(Id_n - T_n) \in \mathcal{L}(l_{\mathcal{S}^n w}^2(\mathbb{Z}(n)))$ is invertible for $n \geq n_2$. With

$$(Id_n - T_n)^{-1} = Id_n + T_n(Id_n - T_n)^{-1}$$

and $a_n \equiv a_n(z) \in l_w^2(\mathbb{Z}(n))$ defined by

$$\mathcal{S}^n a_n := (Id_n - T_n)^{-1} \mathcal{S}^n \hat{V} \in l_{\mathcal{S}^n w}^2 (\mathbb{Z}(n))$$

the expression $\beta(n,z)$ takes the form $\beta(n,z) = \beta_1(n,z) + \beta_2(n,z)$ with

(2.30A)
$$\beta_1(n,z) := \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} \mathcal{S}^n \hat{V} \rangle,$$

(2.30B)
$$\beta_2(n,z) := \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} T_n \mathcal{S}^n a_n \rangle.$$

The two terms $\beta_1(n,z)$ and $\beta_2(n,z)$ are estimated separately: For $n \geq n_2$

$$\sup_{|z| \le M} |\beta_1(n, z)| \le \sum_{k \ne \pm n} |\hat{V}(n - k)| \frac{1}{8|k^2 - n^2|} |\hat{V}(n + k)|$$
$$= \frac{1}{8} (b_{\hat{V}} * b_{\hat{V}})(2n),$$

where

$$b_{\hat{V}}(j) := \frac{|\hat{V}(j)|}{j} \ (j \neq 0) \quad \text{and} \quad b_{\hat{V}}(0) := 0.$$

Notice that $\|b_{\hat{V}}\|_{N+1,\frac{\omega}{2}} \leq 2^{N+1} \|V\|_{N,\omega}$.

Using the fact that $||a*b|| \le (\sum_k |a(k)|) ||b||$ for $(a(k))_{k\in\mathbb{Z}} \in l^1(\mathbb{Z})$ and $(b(k))_{k\in\mathbb{Z}} \in l^2(\mathbb{Z})$, we conclude that

$$\sum_{n \geq n_2} (1 + \frac{n}{2})^{2N+2} e^{2\omega n} \sup_{|z| \leq M} |\beta_1(n, z)|$$

$$\leq \frac{1}{64} \sum_{n \neq 0} |(b_{\hat{V}} * b_{\hat{V}})(2n)|^2 (1 + \frac{|n|}{2})^{2N+2} e^{\omega(2|n|)}$$

$$\leq \frac{1}{64} \pi^2 (2 \| V \|_{N,\omega})^4 = (\frac{\pi}{2} \| V \|_{N,\omega}^2)^2.$$

Direct computations furnish a slightly better estimate:

$$\left(\sum_{n\geq n_{2}} \left(1 + \frac{n}{2}\right)^{2N+2} e^{2\omega n} \sup_{|z|\leq M} |\beta_{1}(n,z)|^{2}\right)^{1/2} \\
\leq \frac{1}{4} \left(\sum_{j\neq 0} \frac{e^{\frac{\omega}{2}|j|} |\hat{V}(j)|}{|j|} + \sum_{j\neq 0} \frac{e^{\frac{\omega}{2}|j|} |\hat{V}(j)|}{|j|}\right) \|V\|_{N,\omega} \\
\leq \frac{1}{2} \left(\sum_{j\neq 0} \frac{1}{j^{2}}\right)^{1/2} \|V\|_{N,\omega}^{2} \leq \|V\|_{N,\omega}^{2}.$$

Next let us estimate $\beta_2(n, z)$ in (2.30B):

$$(1 + \frac{n}{2})^{N+1} e^{\omega n} |\beta_{2}(n, z)|$$

$$= (1 + \frac{n}{2})^{N+1} e^{\omega n} |\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_{n}^{I})^{-1} W_{n}^{-1} \tilde{T}_{n} W_{n} \mathcal{S}^{n} a_{n} \rangle|$$

$$\leq \frac{1}{4} \sum_{\substack{|k-n| \geq n \\ k \neq \pm n}} (1 + \frac{|k-n|}{2})^{N} e^{\frac{\omega}{2}|n-k|} |\hat{V}(n-k)| \frac{1}{|n+k|}$$

$$\times \frac{1}{(1 + \frac{|n+k|}{2})^{N}} |(\tilde{T}_{n} W_{n} \mathcal{S}^{n} a_{n})(k)|$$

$$+ \frac{1}{4} \sum_{\substack{|k-n| < n \\ k \neq \pm n}} \frac{e^{\frac{\omega}{2}|n-k|} |\hat{V}(n-k)|}{|n-k|} |(\tilde{T}_{n} W_{n} \mathcal{S}^{n} a_{n})(k)|$$

$$\leq \frac{1}{2} \|V\|_{N,\omega} \||\tilde{T}_{n}|| \|W_{n} \mathcal{S}^{n} a_{n}\|.$$

By Lemma 2.6 and (2.23), $|||\tilde{T}_n||| \le \frac{\|V\|_{N,\omega}}{5n}$. Further, $|||(Id_n - T_n)^{-1}||| \le \frac{5}{4}$ for $n \ge n_2$, and therefore, by (2.29),

$$\parallel W_n \mathcal{S}^n a_n \parallel_{l^2(\mathbb{Z}(n))} = \parallel \mathcal{S}^n a_n \parallel_{l^2_{\mathcal{S}^n w}(\mathbb{Z}(n))} \leq \frac{5}{4} \parallel V \parallel_{N,\omega}.$$

Combining the estimates above, we obtain

$$\sup_{|z| \le M} (1 + \frac{n}{2})^{N+1} e^{\omega n} |\beta_2(n, z)| \le \frac{\|V\|_{N, \omega}^3}{8n} .$$

Therefore

$$\left(\sum_{n>n_0} \left(1 + \frac{n}{2}\right)^{2(N+1)} e^{2\omega n} \sup_{|z| \le M} |\beta_2(n,z)|^2\right)^{1/2}$$

$$\leq \frac{\parallel V \parallel_{N,\omega}^3}{8} \left(\sum_{n > n_2} \frac{1}{n^2} \right)^{1/2} \leq \frac{1}{8} \parallel V \parallel_{N,\omega}^3.$$

Combined with (2.31), (2.30A) and (2.30B), the estimate (2.27).

(ii) Proof of (2.28): The derivative $\frac{d}{dz}\beta(n,z)$ is given by

(2.32)

$$\frac{d}{dz}\beta(n,z) = \frac{d}{dz} \Big(\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} \mathcal{S}^n \hat{V} \rangle + \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} T_n \mathcal{S}^n a_n \rangle \Big)
= -\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-2} \mathcal{S}^n \hat{V} \rangle - \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-2} T_n \mathcal{S}^n a_n \rangle
- \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} (Id_n - T_n)^{-1} T_n (z - B_n^I)^{-1} \mathcal{S}^n a_n \rangle$$

where we used the fact that the derivative of

$$T_n S^n a_n = T_n (Id_n - T_n)^{-1} S^n \hat{V} = ((Id_n - T_n)^{-1} - Id_n) S^n \hat{V}$$

is given by

$$\frac{d}{dz}T_n\mathcal{S}^n a_n = -(Id_n - T_n)^{-1}T_n(z - B_n^I)^{-1}\mathcal{S}^n a_n.$$

The three terms on the right hand side of (2.32) are estimated separately. The first one is estimated similarly as in (i): Using (2.31), one obtains

(2.32i)
$$\left(\sum_{n \geq n_2} \sup_{|z| \leq M} (1 + \frac{n}{2})^{2N+4} e^{2\omega n} |\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-2} \mathcal{S}^n \hat{V} \rangle|^2 \right)^{1/2}$$

$$\leq \frac{1}{4} \| V \|_{N,\omega}^2 .$$

The second term on the right hand side of (2.32) is estimated similarly as in (i), and one obtains

(2.32ii)
$$\left(\sum_{n\geq n_2} \sup_{|z|\leq M} (1+\frac{n}{2})^{2N+4} e^{2\omega n} |\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z-B_n^I)^{-2} T_n \mathcal{S}^n a_n \rangle|^2\right)^{1/2} \\ \leq \frac{1}{8} \|V\|_{N,\omega}^3.$$

To estimate the last term on the right hand side of (2.32), we first notice that

$$(Id_n - T_n)^{-1}T_n = W_n^{-1}(Id_n - \tilde{T}_n)^{-1}\tilde{T}_nW_n.$$

Thus, with $\tilde{S}_n := (Id_n - \tilde{T}_n)^{-1}\tilde{T}_n$,

$$\begin{split} &(1+\frac{n}{2})^{N+2} \ e^{\omega n} |\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z-B_n^I)^{-1} (Id_n-T_n)^{-1} T_n (z-B_n^I)^{-1} \mathcal{S}^n a_n \rangle| \\ &\leq \frac{1}{4} \sum_{\substack{|k-n| \geq n \\ k \neq \pm n}} (1+\frac{|k-n|}{2})^N \ e^{\frac{\omega}{2}|n-k|} |\hat{V}(n-k)| \\ & \times \left| (\tilde{S}_n W_n (1+n) (z-B_n^I)^{-1} \mathcal{S}^n a_n) (k) \right| \\ & + \frac{1}{4} \sum_{\substack{|k-n| < n \\ k \neq \pm n}} \frac{e^{\frac{\omega}{2}|n-k|} |\hat{V}(n-k)|}{|n-k|} \left| (\tilde{S}_n W_n (1+n) (z-B_n^I)^{-1} \mathcal{S}^n a_n) (k) \right| \\ & \leq \frac{1}{4} \parallel V \parallel_{N,\omega} \parallel \tilde{S}_n W_n (1+n) (z-B_n^I)^{-1} \mathcal{S}^n a_n \parallel \\ & + \frac{1}{4} \parallel V \parallel_{0,\omega} \parallel \tilde{S}_n W_n (1+n) (z-B_n^I)^{-1} \mathcal{S}^n a_n \parallel \\ & \leq \frac{1}{2} \parallel V \parallel_{N,\omega} |||\tilde{T}_n||| |||(Id_n-\tilde{T}_n)^{-1}||| \parallel W_n (1+n) (z-B_n^I)^{-1} \mathcal{S}^n a_n \parallel . \end{split}$$

By Lemma 2.6 and (2.23), $|||\tilde{T}_n||| \le \frac{\|V\|_{N,\omega}}{5n}$ and $|||(Id_n - \tilde{T}_n)^{-1}||| \le \frac{5}{4}$. Further, for $n \ge n_2$

$$|||(1+n)(z-B_n^I)^{-1}|||_{\mathcal{L}(l_{S^n w}^2(\mathbb{Z}(n)))} \leq \sup_{\substack{|z| \leq M \\ k \neq \pm n}} \left| \frac{1+n}{z-\pi^2(k-n)(k+n)} \right| \leq \frac{1}{4}.$$

Thus, with (2.29),

$$\| W_n(1+n)(z-B_n^I)^{-1} \mathcal{S}^n a_n \|_{l^2(\mathbb{Z}(n))} \le \frac{1}{4} \cdot \frac{5}{4} \| V \|_{N,\omega}$$
.

Combining these estimates leads to

(2.32iii)

$$\left(\sum_{n\geq n_2} \sup_{|z|\leq M} \left(1 + \frac{n}{2}\right)^{2N+4} \times e^{2\omega n} |\langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, (z - B_n^I)^{-1} (Id_n - T_n)^{-1} T_n (z - B_n^I)^{-1} \mathcal{S}^n a_n \rangle|^2\right)^{1/2} \\
\leq \frac{1}{32} \|V\|_{N,\omega}^3 \left(\sum_{n\geq n_2} \frac{1}{n^2}\right)^{1/2} \leq \frac{1}{32} \|V\|_{N,\omega}^3.$$

From (2.32) and (2.32i)-(2.32iii) the estimate (2.28) follows.

We are now ready to investigate (2.19). Let

(2.33)
$$r_n := \max(|\hat{V}(\pm 2n)|) + \max_{|z| \le M} |\beta(\pm n, z)|.$$

Notice that, by Proposition 2.7, for $n \geq n_2$,

$$(2.34) r_n \le ||V|| + ||V||_{N,\omega}^2 \left(1 + \frac{1}{8} ||V||_{N,\omega}\right).$$

Proposition 2.8. Assume that $M \geq 10$ satisfies

$$||V|| + ||V||_{N,\omega}^2 \left(1 + \frac{1}{8} ||V||_{N,\omega}\right) \le \frac{M}{4}.$$

Then, for $n \ge n_2$, equation (2.19) has exactly two (counted with multiplicity) solutions ζ_n^+, ζ_n^- in $\overline{\mathcal{D}_{r_n}}$.

Proof. The result follows from Rouché's theorem. Clearly $\zeta^2 = 0$ has two roots in \mathcal{D}_{r_n} . For $|\zeta| = Kr_n$ with 1 < K < 2,

$$\sup_{|z| \le M} \left| (\hat{V}(2n) + \beta(n, z))(\hat{V}(-2n) + \beta(-n, z)) \right| \le r_n^2 < |\zeta^2|.$$

As $\beta(\pm n, z_n(\zeta))$ depend analytically on ζ for $|\zeta| < \frac{M}{2}$ and $Kr_n < 2r_n \leq \frac{M}{2}$, we deduce from Rouché's theorem that equation (2.19) has precisely two roots in \mathcal{D}_{Kr_n} . As the two roots are independent of K and 1 < K < 2 is arbitrary close to 1, we conclude that $\zeta_n^{\pm} \in \overline{\mathcal{D}_{r_n}}$.

Let $z_n^\pm=z(\zeta_n^\pm)=\zeta_n^\pm+\alpha(n,z_n^\pm),$ where ζ_n^\pm are given by Proposition 2.8. Then

$$(2.35) |z_n^+ - z_n^-| \le |\zeta_n^+ - \zeta_n^-| + (\sup_{|z| \le M} |\frac{d}{dz}\alpha(n, z)|)|z_n^+ - z_n^-|.$$

By Lemma 2.4 (ii), (2.20) and as $n_2 \ge n_1$,

$$\sup_{|z| < M} \left| \frac{d}{dz} \alpha(n, z) \right| \le \frac{1}{2}.$$

Together with $|\zeta_n^+ - \zeta_n^-| \le |\zeta_n^+| + |\zeta_n^-| \le 2r_n$, estimate (2.35) leads to $|z_n^+ - z_n^-| \le 4r_n$.

In view of the definition (2.33) of r_n , Proposition 2.7 and $|z_n^+ - z_n^-| = |\lambda_n^+ - \lambda_n^-|$, we conclude that

$$(2.37) \qquad (\sum_{n \geq n_2} (1 + \frac{n}{2})^{2N} e^{2\omega n} |\lambda_n^+ - \lambda_n^-|^2)^{1/2} \\ \leq 8(\|V\|_{N,\omega} + \|V\|_{N,\omega}^2 (1 + \frac{1}{8} \|V\|_{N,\omega})) < \infty.$$

Next we want to obtain asymptotics for $\lambda_n^+ - \lambda_n^-$. Rewrite (2.19) in two ways:

$$(2.38) (\zeta_n^{\pm})^2 - \delta(n)\delta(-n) - \eta_n^{\pm} = 0,$$

with $\eta_n^{\pm} = \eta(z_n^{\pm})$, where $\delta(n), \eta(z)$ are defined either by (alternative 1)

$$\begin{split} \delta(n) &\equiv \delta^{I}(n) := \hat{V}(2n) + \beta(n,0), \\ \eta(z) &\equiv \eta^{I}(z) := (\beta(-n,z) - \beta(-n,0))\hat{V}(2n) \\ &+ (\beta(n,z) - \beta(n,0))\hat{V}(-2n) \\ &+ \beta(-n,z)\beta(n,z) - \beta(-n,0)\beta(n,0) \end{split}$$

or by (alternative 2)

$$\begin{split} \delta(n) &\equiv \delta^{II}(n) := \hat{V}(2n), \\ \eta(z) &\equiv \eta^{II}(z) := \beta(-n, z)\hat{V}(2n) + \beta(n, z)\hat{V}(-2n) + \beta(-n, z)\beta(n, z). \end{split}$$

Introduce s_n , given by (alternative 1)

$$s_n \equiv s_n^I := \sup_{|z| \le M} \left(|\beta(-n, z) - \beta(-n, 0)| |\hat{V}(2n)| + |\beta(n, z) - \beta(n, 0)| |\hat{V}(-2n)| + |\beta(-n, z)| |\beta(n, z)| + |\beta(-n, 0)| |\beta(n, 0)| \right)$$

or by (alternative 2)

$$s_n \equiv s_n^{II} := \sup_{|z| < M} \left(|\beta(-n, z)| |\hat{V}(2n)| + |\beta(n, z)| |\hat{V}(-2n)| + |\beta(-n, z)| |\beta(n, z)| \right).$$

Use $|\beta(n,z)-\beta(n,0)| \le M \sup_{|z|\le M} |\frac{d}{dz}\beta(n,z)|$ and Proposition 2.7 to obtain

$$(2.39^{I}) \sum_{n \geq n_{2}} (1 + \frac{n}{2})^{2N+2} e^{2\omega n} s_{n}^{I}$$

$$\leq \frac{M}{2} \| V \|_{N,\omega}^{3} (1 + \| V \|_{N,\omega}) + 2 \| V \|_{N,\omega}^{4} (1 + \frac{1}{8} \| V \|_{N,\omega})^{2}$$

and

(2.39^{II})
$$\sum_{n \geq n_2} (1 + \frac{n}{2})^{2N+1} e^{2\omega n} s_n^{II}$$

$$\leq 2 \| V \|_{N,\omega}^3 (1 + \frac{1}{8} \| V \|_{N,\omega}) + \| V \|_{N,\omega}^4 (1 + \frac{1}{8} \| V \|_{N,\omega})^2.$$

Proposition 2.9. Assume that $M \geq 10$ satisfies

$$||V|| + ||V||_{N,\omega}^2 \left(1 + \frac{1}{8} ||V||_{N,\omega}\right) \le \frac{M}{4}.$$

Then for $n \geq n_2$ and $\delta(n), s_n$ given by either $\delta^I(n), s_n^I$ or $\delta^{II}(n), s_n^{II}$, the roots ζ_n^+, ζ_n^- can be labeled in such a way that

(i)
$$|\zeta_n^+ - (\delta(n)\delta(-n))^{1/2}| \le 5s_n^{1/2}$$
,

(i)
$$|\zeta_n^+ - (\delta(n)\delta(-n))^{1/2}| \le 5s_n^{1/2}$$
,
(ii) $|\zeta_n^- + (\delta(n)\delta(-n))^{1/2}| \le 5s_n^{1/2}$.

Proof. We consider two different cases:

Case 1. $|\delta(n)\delta(-n)| \leq 4s_n$. This is an easy case for which (i) and (ii) are proved in the same way. Let us concentrate on (i). Then

$$|(\zeta_n^+ - (\delta(n)\delta(-n))^{1/2})^2| \le 2|(\zeta_n^+)^2| + 2|\delta(n)\delta(-n)|$$

$$\le 2|\delta(n)\delta(-n) + \eta_n^+| + 2|\delta(n)\delta(-n)|$$

$$< 4|\delta(n)\delta(-n)| + 2|\eta_n^+| < 18s_n < (5s_n^{1/2})^2,$$

where for the second inequality, we used (2.38).

Thus
$$|\zeta_n^+ - (\delta(n)\delta(-n))^{1/2}| \le 5s_n^{1/2}$$
.

Case 2. $|\delta(n)\delta(-n)| \geq 4s_n$. Without any loss of generality we may assume that $s_n > 0$. In particular, $|\delta(n)\delta(-n)| > 0$. The equation (2.38) can than be rewritten

(2.40)
$$(\zeta_n)^2 = \delta(-n)\delta(n) \left(1 + \frac{\eta(z(\zeta_n))}{\delta(-n)\delta(n)}\right)$$

where $z(\zeta_n)$ is given by (2.18). With

$$\xi := \frac{\zeta_n}{(\delta(-n)\delta(n))^{1/2}}$$

formula (2.40) leads to

(2.41)
$$(\xi)^2 = \left(1 + \frac{\eta(z(\zeta_n))}{(\delta(-n)\delta(n))}\right).$$

As $|\delta(n)\delta(-n)| \ge 4s_n$, one concludes that $\left|\frac{\eta(z(\zeta_n))}{\delta(-n)\delta(n)}\right| \le \frac{1}{4}$.

Denoting by $(1+w)^{1/2}$ the branch of the square root determined by $(1)^{1/2}=+1$, we obtain the equations

(2.42[±])
$$\xi = \pm F(\xi) = \pm \left(1 + \frac{\eta(z)}{\delta(n)\delta(-n)}\right)^{1/2}$$

with $z=z(\zeta_n)=z((\delta(n)\delta(-n))^{1/2}\cdot\xi)$. Let us first consider (2.42⁺): Introduce $\mathcal{D}_{1/4}(1) := \{\xi \in \mathbb{C} | |\xi - 1| < \frac{1}{4} \}$ and notice that for $\xi \in \mathcal{D}_{1/4}(1), \zeta_n :=$ $(\hat{V}(2n)\hat{V}(-2n))^{1/2}\xi$ satisfies $|\zeta_n| \leq \frac{M}{4} \cdot \frac{5}{4} < \frac{M}{2}$. As $|(1+x)^{1/2} - 1| \leq |x|$ for $x \in \mathcal{D}_{1/4}(0)$ and case 2 holds, we conclude that

F maps $\overline{\mathcal{D}_{1/4}(1)}$ into itself. Moreover F is continuous and therefore, according to Brower's fixed point theorem, admits at least one fixed point, denoted by ξ^{I} , i.e.

$$\xi^{I} = +F(\xi^{I}) = +\left(1 + \frac{\eta(z^{I})}{\delta(n)\delta(-n)}\right)^{1/2}$$

where $z^I = z((\hat{V}(-2n)\hat{V}(2n))^{1/2}\xi^I)$. Then, as we are in case 2,

$$|\xi^{I} - 1| \le \left| \left(1 + \frac{\eta(z^{I})}{\delta(n)\delta(-n)} \right)^{1/2} - 1 \right| \le \frac{|\eta(z^{I})|}{|\delta(n)\delta(-n)|}$$

$$\le \frac{1}{2} \frac{s_n^{1/2}}{|\delta(n)\delta(-n)|^{1/2}}$$

and, with $\zeta^I := (\delta(n)\delta(-n))^{1/2}\xi^I$,

(2.43)
$$|\zeta^{I} - (\delta(-n)\delta(n))^{1/2}| \le \frac{1}{2} s_n^{1/2}.$$

The same arguments can be used to show that there exists a solution $\xi^{II} \in$ $\mathcal{D}_{1/4}(-1)$ of (2.42^{-}) so that, with $\zeta^{II} := (\delta(n)\delta(-n))^{1/2} \xi^{II}$,

(2.44)
$$|\zeta^{II} + (\delta(n)\delta(-n))^{1/2}| \le \frac{1}{2} s_n^{1/2} .$$

It remains to show that $\{\zeta^I,\zeta^{II}\}=\{\zeta_n^+,\zeta_n^-\}$. First notice that $\zeta^I\neq\zeta^{II}$. Otherwise, we obtain a contradiction, by combining (2.43), (2.44), $s_n>0$ and the inequality case 2 as follows: Assume $\zeta^I=\zeta^{II}=\zeta^*$. Then

$$\begin{split} 0 < 2(2\ s_n^{1/2}) & \leq |2(\delta(-n)\delta(n))^{1/2}| \leq |(\delta(n)\delta(-n)^{1/2} - \zeta^* + (\delta(n)\delta(-n))^{1/2} + \zeta^*| \\ & \leq \frac{1}{2}\ s_n^{1/2}\ +\ \frac{1}{2}\ s_n^{1/2}\ =\ s_n^{1/2}, \end{split}$$

and $0 < 4s_n^{1/2} \le s_n^{1/2}$ gives the claimed contradiction. Further notice that $\zeta^I, \zeta^{II}, \zeta_n^+, \zeta_n^-$ are all solutions of (2.40). But according to Proposition 2.8, equation (2.40) has precisely two solutions. Therefore $\{\zeta^I, \zeta^{II}\}$ $\{\zeta_n^+, \zeta_n^-\}$. This proves Proposition 2.9 in case 2.

We are now ready to prove Theorem 2. It is contained in the following

Theorem 2.10. Let $S^1 = \mathbb{R}/\mathbb{Z}, \ N \in \mathbb{Z}_{\geq 0}, \ \omega \in \mathbb{R}_{\geq 0} \ and \ M \geq 10.$ Then, for any $V \in H^{N,\omega}(S^1;\mathbb{C})$ with $\|V\| + \|V\|_{N,\omega}^2 (1 + \frac{1}{8} \|V\|_{N,\omega}) \leq \frac{M}{4}$,

(i)
$$\left(\sum_{n>M^2} \left(1+\frac{n}{2}\right)^{2N+1} e^{2\omega n} \left| (\lambda_n^+ - \lambda_n^-) - 2(\hat{V}(-2n)\hat{V}(2n))^{1/2} \right|^2 \right)^{1/2} \le 3M^2$$
,

(ii)
$$\left(\sum_{n \ge M^2} (1 + \frac{n}{2})^{2N+2} e^{2\omega n}\right)$$

$$\times \left| (\lambda_n^+ - \lambda_n^-) - 2((\hat{V}(-2n) + \beta(-n, 0))(\hat{V}(2n) + \beta(n, 0)))^{1/2} \right|^2 \right)^{1/2} \le 5M^2,$$

where, for $n \geq M^2$, $\lambda_n^{\pm} = n^2 \pi^2 + z_n^{\pm}$ (and thus $\{\lambda_n^+, \lambda_n^-\} = \{\lambda_{2n}, \lambda_{2n-1}\}$) with $(\lambda_n)_{n \geq 0}$ denoting the periodic spectrum (ordered as explained in the introduction) of $-\frac{\overline{d^2}}{dx^2}$ + V considered on the interval [0,2]) and $(\hat{V}(k))_{k\in\mathbb{Z}}$ are the Fourier coefficients of V when considered as functions with period 2.

Proof. Without any loss of generality we assume that $V \in H_0^{N,\omega}(S^1;\mathbb{C})$. Statements (i) and (ii) are proved in the same way, so we concentrate on (i). Notice that $M^2 \ge n_2 := \max(\frac{M+1}{2}, \parallel V \parallel^2, \parallel V \parallel_{N,\omega}).$ For $n \ge M^2$, $\lambda_n^+ - \lambda_n^- = z_n^+ - z_n^-$. Furthermore, $z_n^{\pm} = \alpha(n, z_n^{\pm}) + \zeta_n^{\pm}$, and, by Proposition 2.9,

$$|(\zeta_n^+ - \zeta_n^-) - 2(\hat{V}(-2n)\hat{V}(2n))^{1/2}| \le 10s_n^{1/2}.$$

Therefore

$$|\lambda_{n}^{+} - \lambda_{n}^{-} - 2(\hat{V}(-2n)\hat{V}(2n))^{1/2}|$$

$$\leq |\zeta_{n}^{+} - \zeta_{n}^{-} - 2(\hat{V}(-2n)\hat{V}(2n))^{1/2}| + \left(\sup_{|z| \leq M} \left| \frac{d}{dz}\alpha(n,z) \right| \right) |z_{n}^{+} - z_{n}^{-}|$$

$$\leq 10s_{n}^{1/2} + \frac{\|V\|^{2}}{n^{2}} |z_{n}^{+} - z_{n}^{-}|,$$

where for the last inequality, we used Lemma 2.4 (ii) and (2.26). By (2.37)

$$(2.46) \qquad \left(\sum_{n\geq M^2} (1+\frac{n}{2})^{2N+4} e^{2\omega n} \left(\frac{\parallel V \parallel^2}{n^2} |z_n^+ - z_n^-|\right)^2\right)^{1/2} \\ \leq 2 \cdot \parallel V \parallel^2 8(\parallel V \parallel_{N,\omega} + \parallel V \parallel_{N,\omega}^2 (1+\frac{1}{8} \parallel V \parallel_{N,\omega})) \leq 2M^2.$$

By (2.39^{II}) ,

(2.47)
$$10 \cdot \left(\sum_{n > M^2} \left(1 + \frac{n}{2}\right)^{2N+1} e^{2\omega n} s_n\right)^{1/2} \le 5M .$$

As $M \ge 10$, $5M \le M^2$, and therefore from (2.45), (2.46) and (2.47) we obtain (2.48)

$$\left(\sum_{n>M^2} (1+\frac{n}{2})^{2N+1} e^{2\omega n} \mid \lambda_n^+ - \lambda_n^- - 2(\hat{V}(-2n)\hat{V}(2n))^{1/2} \right|^2)^{1/2} \le 3M^2 . \quad \Box$$

 $Remark\ 1.$ Theorem 2.10 can be improved for real valued potentials. It leads to a result obtained by Marčenko [Ma]:

Theorem 2.10 A. Let $N \in \mathbb{Z}_{\geq 0}$ and $M \geq 10$. Then, for any $V \in H^{N,\omega}(S^1; \mathbb{R})$ with $||V|| + ||V||_{N,\omega}^2$ $(1 + \frac{1}{8} ||V||_{N,\omega}) \leq \frac{M}{4}$,

$$(2.49) \sum_{n>M^2} (1+\frac{n}{2})^{2N+2} e^{2\omega n} \left| (\lambda_n^+ - \lambda_n^-) - 2 \mid \hat{V}(-2n)\hat{V}(2n) \mid^{1/2} \right|^2 \leq 3M^2.$$

Remark for Theorem 2.10 A. Recall that

(2.19)
$$(\zeta_n)^2 - \hat{V}(2n)\hat{V}(-2n) - \eta_n = 0.$$

If V is real valued, then $|\hat{V}(2n)| = |\hat{V}(-2n)|$. This is a quantitative version of the following statement:

(2.50)
$$\hat{V}(2n) \cdot \hat{V}(-2n) = 0 \iff \hat{V}(2n) = 0 \text{ and } \hat{V}(-2n) = 0.$$

To improve on Theorem 2.10 as in Theorem 2.10 A, it seems that one needs to restrict to potentials satisfying a vanishing condition which is a quantitative version of (2.50).

Proof of Theorem 2.10 A. Without any loss of generality, $V \in H_0^{N,\omega}(S^1;\mathbb{R})$, i.e. $\hat{V}(0) = 0$. If V is real valued, then $\hat{V}(-k) = \overline{\hat{V}(k)}$, and

(2.51)
$$\beta(-n,z) = \overline{\beta(n,\bar{z})} \quad (|z| \le M, \ n \ge n_2),$$

$$(2.52) \overline{\alpha(n,z)} = \alpha(n,\bar{z}) \quad (|z| \le M, \ n \ge n_2).$$

Further, $-\frac{d^2}{dx^2}+V$ is selfadjoint, and therefore, the perodic spectrum of $-\frac{d^2}{dx^2}+V$ is contained in \mathbb{R} . Following the proof of Theorem 2.10, we know that for $n\geq 2M^2$ we have $\lambda_n^\pm=n^2\pi^2+z_n^\pm$, and thus $z_n^\pm\in\mathbb{R}$. Moreover, $\zeta_n^\pm=z_n^\pm-\alpha(n,z_n^\pm)\in\mathbb{R}$, as $\alpha(n,z_n^\pm)\in\mathbb{R}$ by (2.52).

Therefore, equation (2.19) can be written as

$$(\zeta_n^{\pm})^2 = |\hat{V}(2n) + \beta(n, z(\zeta_n^{\pm}))|^2,$$

which leads to

$$\zeta_n^{\pm} = \pm |\hat{V}(2n) + \beta(n, z(\zeta_n^{\pm}))|.$$

Thus

$$|\zeta_n^{\pm} - (\pm |\hat{V}(2n)|)| \le |\hat{V}(2n) + \beta(n, z(\zeta_n^{\pm}))| - |\hat{V}(2n)|| \le |\beta(n, z(\zeta_n^{\pm}))|$$

and, by Proposition 2.7,

(2.53)
$$\left(\sum_{n\geq n_2} (1+\frac{n}{2})^{2N+2} e^{2\omega n} \mid (\zeta_n^+ - \zeta_n^-) - 2|\hat{V}(2n)| \mid \right)^{1/2} \\ \leq \|V\|_{N,\omega}^2 \left(1+\frac{1}{8} \|V\|_{N,\omega}\right) \leq \frac{M}{4}.$$

Combining with (2.45) and (2.46), one obtains

$$\begin{split} & \Big(\sum_{n \geq M^2} (1 + \frac{n}{2})^{2N+2} \; e^{2\omega n} \; \Big| \; (\lambda_n^+ - \lambda_n^-) \; - \; 2 |\hat{V}(2n)| \; \Big|^2 \Big)^{1/2} \\ & \leq \; 2M^2 \; + \; \frac{M}{4} \; \leq 3M^2 \; . \qquad \Box \end{split}$$

Remark 2. If V is an even, possibly complex valued potential, Theorem 2.10 can be reformulated in a way which leads to an improvement. In the case when $V \in H^{N,\omega}(S^1;\mathbb{C})$ is even, i.e. V(x) = V(-x), it is a well known fact that for n sufficiently large, $\{\lambda_n^+, \lambda_n^-\} = \{\mu_n, \nu_n\}$, where $(\mu_n)_{n\geq 1}$ denote the Dirichlet eigenvalues and $(\nu_n)_{n\geq 0}$ denote the Neumann eigenvalues of $-\frac{d^2}{dx^2} + V$ considered on the unit interval. Further, the eigenfunctions of the Dirichlet eigenvalues are odd, whereas the eigenfunctions of the Neumann eigenvalues are even.

Theorem 2.10 B. Let $N \in \mathbb{Z}_{\geq 0}$, $\omega \in \mathbb{R}_{\geq 0}$ and $M \geq 10$.

Then, for any **even** potential $V \in H^{N,\omega}(S^1,\mathbb{C})$ satisfying

$$||V|| + ||V||_{N,\omega}^2 \left(1 + \frac{1}{8} ||V||_{N,\omega}\right) \le \frac{M}{4},$$

we have

$$\left(\sum_{n>M^2} (1+\frac{n}{2})^{2n+2} e^{2\omega n} \mid (\mu_n - \nu_n) + 2\hat{V}(2n)|^2\right)^{1/2} \leq 3M^2.$$

Proof. In the case where V is even one verifies that

$$\hat{V}(2k) = \hat{V}(-2k); \ \beta(-k, z) = \beta(k, z) \ .$$

Therefore, equation (2.19) leads to $\zeta_n^2 = (\hat{V}(2n) + \beta(n, z(\zeta_n)))^2$ and, in turn,

(2.53[±])
$$\zeta_n^{\pm} = \pm (\hat{V}(2n) + \beta(n, z(\zeta_n^{\pm}))).$$

Then, with $\varepsilon_n = \pm$,

$$\mu_n = n^2 \pi^2 + \alpha(n, z(\zeta_n^{\varepsilon_n})) + \varepsilon_n(\hat{V}(2n) + \beta(n, z(\zeta_n^{\varepsilon_n})))$$

and

$$\nu_n = n^2 \pi^2 + \alpha(n, z(\zeta_n^{-\varepsilon_n})) - \varepsilon_n(\hat{V}(2n) + \beta(n, z(\zeta_n^{-\varepsilon_n}))).$$

To determine the sign ε_n , recall that the eigenfunction $y_2(x, \mu_n)$ is odd. Its Fourier coefficients $(a(k;n))_{k\in\mathbb{Z}}$ therefore satisfy a(-k;n)=-a(k;n).

Thus, in equation (2.14), x = -y. Together with

$$-z(\zeta^{\varepsilon_n}) + \alpha(n, z(\zeta^{\varepsilon_n})) = \zeta^{\varepsilon_n} = \varepsilon_n(\hat{V}(2n) + \beta(n, z(\zeta_n^{\varepsilon_n}))),$$

equation (2.14) implies

$$(\varepsilon_n(\hat{V}(2n) + \beta(n, z(\zeta^{\varepsilon_n}))) + \hat{V}(2n) + \beta(n, z(\zeta^{\varepsilon_n})))x = 0.$$

Since, in view of (2.5)-(2.7), $(x,y) \neq (0,0)$ (for $n \geq n_0$) (otherwise, a(k,n) = 0 for all k) we then conclude that $\varepsilon_n = -1$ as claimed. As a consequence,

$$\mu_n - \nu_n = -2\hat{V}(2n) - \beta(n, z_n^+) - \beta(n, z_n^-) + \alpha(n, z_n^-) - \alpha(n, z_n^+) .$$

As in the proof of Theorem 2.10 A, one then obtains, by Proposition 2.7, combined with (2.45) and (2.46),

$$\left(\sum_{n\geq 2M^2} \left(1+\frac{n}{2}\right)^{2N+2} e^{2\omega n} |\mu_n - \nu_n + 2\hat{V}(2n)|^2\right)^{1/2} \leq 3M^2 . \quad \Box$$

As an application of Theorem 2.10 we obtain asymptotic estimates of the eigenvalues λ_n^{\pm} ,

(2.54[±])
$$\lambda_n^{\pm} = n^2 \pi^2 + \alpha (n, \frac{z_n^+ + z_n^-}{2}) \\ \pm ((\hat{V}(-2n) + \beta(-n, 0))(\hat{V}(2n) + \beta(n, 0)))^{1/2} + l_{N+1, \omega}^2(n),$$

and of $\tau_n := \frac{\lambda_n^+ + \lambda_n^-}{2}$,

(2.55)
$$\tau_n = n^2 \pi^2 + \alpha(n, \frac{z_n^+ + z_n^-}{2}) + l_{N+1,\omega}^2(n),$$

where, by abuse of notation, we mean by $(l_{N+1,\omega}^2(n))_{n\geq 1}$ an element in $l_{N+1,\omega}^2(\mathbb{N})$. We finish this section with a brief discussion of the linear space E_n spanned by eigenfunctions f_n^+ , f_n^- corresponding to simple eigenvalues $\lambda_n^+ \neq \lambda_n^-$, and of the

root space E_n corresponding to double eigenvalues $\lambda_n^+ = \lambda_n^-$. For a function $f(x) = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ik\pi x}$ in E_n , the part $\sum_{k \neq \pm n} \hat{f}(k) e^{ik\pi x}$ is small when compared with $\hat{f}(n) e^{in\pi x} + \hat{f}(-n) e^{-in\pi x}$. This follows from the

In view of (2.7), we introduce $a_{x,y,z} \in l^2(\mathbb{Z}(n))$:

following result, which we will use in section 3.

$$(2.56) a_{x,y,z} := x(z - B_n)^{-1} (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)} + y(z - B_n)^{-1} (\mathcal{S}^{-n} \hat{V})_{\mathbb{Z}(n)}.$$

Proposition 2.11. Assume $V \in H_0^{N,\omega}(S^1;\mathbb{C})$. Then for $|z| \leq M$, $n \geq n_2$ and $x, y \in \mathbb{C}$

(i)
$$\| (z - B_n)^{-1} (S^n V)_{\mathbb{Z}(n)} \|_{l_{S_{n,n}}^2(\mathbb{Z}(n))} \leq \frac{1}{n} \| V \|_{N,\omega} ;$$

(ii)
$$\| (z - B_n)^{-1} (S^{-n}V)_{\mathbb{Z}(n)} \|_{l_{S^{-n}w}^2(\mathbb{Z}(n))} \le \frac{1}{n} \| V \|_{N,\omega} ;$$

(iii)
$$\left(\sum_{k \neq \pm n} e^{|k|-n} |\omega| (1+|\frac{|k|-n|}{2}|)^{2N} |a_{x,y,z}(k)|^2\right)^{1/2} \leq \frac{|x|+|y|}{n} \|V\|_{N,\omega};$$

(iv)
$$\|(z-B_n)^{-1}(S^nV)_{\mathbb{Z}(n)}\|_{l^1(\mathbb{Z}(n))} \le \frac{1}{n} \|V\|$$
;

(iv)
$$\|(z - B_n)^{-1}(S^n V)_{\mathbb{Z}(n)}\|_{l^1(\mathbb{Z}(n))} \le \frac{1}{n} \|V\|;$$

(v) $\|(z - B_n)^{-1}(S^{-n} V)_{\mathbb{Z}(n)}\|_{l^1(\mathbb{Z}(n))} \le \frac{1}{n} \|V\|;$
(vi) $\sum_{k \neq \pm n} |a_{x,y,z}(k)| \le \frac{|x| + |y|}{n} \|V\|.$

(vi)
$$\sum_{k \neq \pm n} |a_{x,y,z}(k)| \leq \frac{|x|+|y|}{n} \|V\|$$
.

Remark. Notice that, with $w_1 := S^n w, w_2 := S^{-n} w$, the function

$$w_1 \wedge w_2(k) := \min(w_1(k), w_2(k))$$

is given by

$$w_1 \wedge w_2(k) = (1 + |\frac{|k| - n}{2}|)^N e^{\frac{\omega}{2}||k| - n||}$$
$$= \begin{cases} w_1(k) & \text{for } k \le 0, \\ w_2(k) & \text{for } k \ge 0. \end{cases}$$

Furthermore,

$$\sup_k \ \frac{w_1(k)}{w_2(k)} \ \leq \ (1+n)^N \ e^{n\omega} \quad \text{and} \quad \sup_k \frac{w_2(k)}{w_1(k)} \ \leq (1+n)^N \ e^{n\omega} \ .$$

This implies that $w_1 \wedge w_2$ is a weight with $M_{w_1 \wedge w_2} = ((1+n)^N e^{n\omega})^2$. Thus $M_{w_1 \wedge w_2}$ is increasing in n.

Proof. (i) By Lemma 2.6,

$$|||T_n|||_{\mathcal{L}(l^2_{\mathcal{S}^n w}(\mathbb{Z}(n)))} \le \frac{\parallel V \parallel_{N,\omega}}{2n}$$

and thus, for $|z| \leq M$ and $n \geq n_2$,

$$|||(z-B_n)^{-1}|||_{\mathcal{L}(l^2_{\mathcal{S}^nw}(\mathbb{Z}(n)))} = |||(z-B_n^I)^{-1} \cdot (Id_n - T_n)^{-1}|||_{\mathcal{L}(l^2_{\mathcal{S}^nw}(\mathbb{Z}(n)))}$$

$$\leq 2|||(z-B_n^I)^{-1}|||_{\mathcal{L}(l_{S^nw}^2(\mathbb{Z}(n)))} \leq 2 \cdot \frac{1}{2n}$$

where for the last inequality we used Lemma 2.1. This implies that

$$\| (z - B_n)^{-1} (\mathcal{S}^n V)_{\mathbb{Z}(n)} \|_{l_{\mathcal{S}^n w}^2(\mathbb{Z}(n))} \le \frac{1}{n} \| \mathcal{S}^n V \|_{\mathcal{S}^n w} \le \frac{1}{n} \| V \|_{N,\omega}.$$

(ii) Using the same arguments as in the proof of Lemma 2.6, one shows that

$$|||T_n|||_{\mathcal{L}(l^2_{\mathcal{S}^{-n}w}(\mathbb{Z}(n)))} \leq \frac{\parallel V \parallel_{N,\omega}}{2n}.$$

One then argues as in the proof of (i) to conclude (ii).

(iii) Notice that for $k \in \mathbb{Z}, n \geq 1$

$$|k| - n| = \min(|k - n|, |k + n|)$$
.

Thus

$$(1+|\frac{|k|-n}{2}|)^N e^{\frac{\omega}{2}||k|-n||} \le \min((\mathcal{S}^n w)(k), (\mathcal{S}^{-n} w)(k))$$

and (iii) follows from (i), (ii) and (2.56).

(iv) We have

$$\| (z - B_n)^{-1} (\mathcal{S}^n V)_{\mathbb{Z}(n)} \|_{l^1(\mathbb{Z}(n))} = \| (z - B_n^I)^{-1} (Id_n - T_n)^{-1} (\mathcal{S}^n V)_{\mathbb{Z}(n)} \|_{l^1(\mathbb{Z}(n))}$$

$$= \sum_{k \neq \pm n} \frac{1}{|z - \pi^2 (k^2 - n^2)|} |(Id_n - T_n)^{-1} (\mathcal{S}^n V)(k)|$$

$$\leq \left(\sum_{k \neq \pm n} \frac{1}{|z - \pi^2 (k^2 - n^2)|^2} \right)^{1/2} \| (Id_n - T_n)^{-1} (\mathcal{S}^n V)_{\mathbb{Z}(n)} \|$$

$$\leq \frac{1}{2n} \cdot 2 \cdot \| V \|,$$

where for the last inequality we used Lemma 2.1 (and its proof).

- (v) is proved in the same way as (iv).
- (vi) follows from (iv) and (v).

3. Proof of Theorem 1

To prove Theorem 1, we follow the same scheme used in [BKM1, section 2]. Recall that the map Λ (cf. [BBGK]) is constructed in two steps. First let us consider the map $\Phi: L_0^2(S^1) \to l^2(\mathbb{R}^2)$, introduced and analyzed in [Ka]. For $V \in L_0^2(S^1)$, denote by E_n the image of the Riesz projector $(n \ge 1)$

(3.1)
$$P_n := \frac{1}{2\pi i} \int_{\Gamma_n} (z - (-\frac{d^2}{dx^2} + V))^{-1} dz,$$

where Γ_n is a counterclockwise oriented circle with center $\tau_n(V) := (\lambda_n^+ + \lambda_n^-)/2$ of radius bigger than $\frac{\gamma_n}{2} = \frac{\lambda_n^+ - \lambda_n^-}{2}$, but sufficiently small so that all eigenvalues different from λ_n^+ , λ_n^- are outside of Γ_n . Here, for convenience, we set $\lambda_n^+ \equiv \lambda_{2n}$ and $\lambda_n^- \equiv \lambda_{2n-1}$.

We choose in E_n a basis

$$G_{2n-1}(x) \equiv G_n^-(x) = \sum_{k \in \mathbb{Z}} \hat{G}_n^-(k) e^{ik\pi x},$$

 $G_{2n}(x) \equiv G_n^+(x) = \sum_{k \in \mathbb{Z}} \hat{G}_n^+(k) e^{ik\pi x}$

normalized as follows (the normalization conditions are written in such a way that they remain unchanged if we consider small complex valued perturbations of V):

(3.2)
$$\sum_{k \in \mathbb{Z}} \hat{G}_n^{\pm}(k) \; \hat{G}_n^{\pm}(-k) = 1,$$

(3.3)
$$0 = G_n^-(0) = \sum_{k \in \mathbb{Z}} \hat{G}_n^-(k),$$

(3.4)
$$0 = \langle G_n^-, G_n^+ \rangle = \sum_{k \in \mathbb{Z}} \hat{G}_n^-(k) \hat{G}_n^+(-k) .$$

The signs of G_n^- and G_n^+ are determined in such a way that (with $'=\frac{d}{dx}$)

(3.5)
$$Re((G_n^-)'(0)) > 0$$

(3.6)
$$Re \left(\det \left(\begin{array}{cc} G_n^+(0) & G_n^-(0) \\ (G_n^+)'(0) & (G_n^-)'(0) \end{array} \right) \right) > 0 .$$

The map $\Phi(V) := (\Phi_n(V))_{n \ge 1}$ is then defined by

(3.7)
$$\Phi_n(V) := \begin{pmatrix} \int_{S^1} G_n^+(x) (-\frac{d^2}{dx^2} + V - \tau_n) G_n^+(x) dx \\ \int_{S^1} G_n^-(x) (-\frac{d^2}{dx^2} + V - \tau_n) G_n^+(x) dx \end{pmatrix}.$$

According to [Ka] (cf. also [BBGK, section 4]), $\Phi: L_0^2(S^1) \to l^2(\mathbb{R}^2)$ is real analytic. Denote by $\Phi^{(N,\omega)}$ the restriction $\Phi^{(N,\omega)}:=\Phi|_{H_0^{N,\omega}(S^1)}$. Note that Theorem 2 implies that $\Phi^{(N,\omega)}(H_0^{N,\omega}(S^1)) \subseteq l_{N,\omega}^2(\mathbb{R}^2)$.

Since $\Phi: L_0^2(S^1) \to l^2(\mathbb{R}^2)$ is real analytic, for any $V_0 \in L_0^2(S^1)$, there exists a neighborhood \mathcal{U} of V_0 in $L^2_0(S^1;\mathbb{C})$ so that Φ can be extended to an analytic map, $\Phi: \mathcal{U} \to l^2(\mathbb{N}; \mathbb{C}^2)$. Thus $\Phi^{(N,\omega)}$ extends to a map on $\mathcal{U} \cap H_0^{N,\omega}(S^1; \mathbb{C})$.

Proposition 3.1. Assume $V_0 \in H_0^{N,\omega}(S^1; \mathbb{R})$ $(N \in \mathbb{Z}_{\geq 0}, \omega \in \mathbb{R}_{\geq 0}).$ (i) Then there exist a neighborhood \mathcal{U} of V_0 in $H_0^{N,\omega}(S^1; \mathbb{C})$ and $1 \leq C < \infty$ such that Φ_n is analytic on \mathcal{U} $(n \geq 1)$ and, for any $V \in \mathcal{U}$,

$$\sum_{n\geq 1} (1+n)^{2N+2} e^{2n\omega} \left\| \Phi_n(V) - \left(\frac{\frac{\hat{V}(2n) + \hat{V}(-2n)}{2}}{\frac{\hat{V}(2n) - \hat{V}(-2n)}{2i}} \right) \right\|^2 \leq C.$$

(ii)
$$\Phi^{(N,\omega)}: H_0^{N,\omega}(S^1) \to l_{N,\omega}^2(\mathbb{R}^2)$$
 is real analytic.

Proof. (ii) From (i) we conclude that $\Phi^{(N,\omega)}(\mathcal{U})$ is a bounded subset of $l_{N,\omega}^2(\mathbb{N};\mathbb{C}^2)$. Moreover, Φ_n is analytic on \mathcal{U} for any $n \geq 1$. As $V_0 \in H_0^{N,\omega}(S^1)$ is arbitrary, this implies that $\Phi^{(N,\omega)}: H_0^{N,\omega}(S^1) \to l_{N,\omega}^2(\mathbb{R}^2)$ is real analytic (cf. [PT, Appendix A]).

(i) As $\Phi^{(N,\omega)}$ is the restriction of Φ and Φ is locally bounded, it suffices to find $\mathcal{U}, C, n_3 \geq 1$ such that for $V \in \mathcal{U}$

$$(3.8) \sum_{n > n_3} (1+n)^{2N+2} e^{2n\omega} \left\| \Phi_n(V) - \left(\frac{(\hat{V}(2n) + \hat{V}(-2n))/2}{(\hat{V}(2n) - \hat{V}(-2n)/2i)} \right) \right\|^2 \le C.$$

To prove (3.8) we consider the cases where $\lambda_n^+ = \lambda_n^-$ and $\lambda_n^+ \neq \lambda_n^-$ separately. The statement follows from Lemma 3.2 and Lemma 3.3 below.

Let us first treat the case where $\lambda_n^+ = \lambda_n^-$ is a double eigenvalue of $-\frac{d^2}{dx^2} + V$ for $V \in H_0^{N,\omega}(S^1,\mathbb{C})$. Let $\mathcal{M} = \{n \geq 2n_2 \mid \lambda_n^+ = \lambda_n^-\}$, where n_2 is given by (2.26). For $n \in \mathcal{M}$ we have $z_n^+ = z_n^-$, and therefore

$$\zeta_n^+ = \zeta_n^-.$$

Together with $(\zeta_n^{\pm})^2 = A$, where $A = (\hat{V}(2n) + \beta(n, z_n^+))(\hat{V}(-2n) + \beta(-n, z_n^+))$, it follows that

(3.10)
$$\zeta_n^+ = \zeta_n^- = 0.$$

For $n \in \mathcal{M}$, G_n^+ and G_n^- are of the form

(3.11)
$$G_n^+ = x_n^+ e^{-in\pi x} + y_n^+ e^{in\pi x} + \sum_{k \neq \pm n} a_{x_n^+, y_n^+, z_n^+}(k) e^{ik\pi x},$$

(3.12)
$$G_n^- = x_n^- e^{-in\pi x} + y_n^- e^{in\pi x} + \sum_{k \neq +n} a_{x_n^-, y_n^-, z_n^+}(k) e^{ik\pi x},$$

where $a_{x_n^{\pm},y_n^{\pm},z_n^{+}}$ is given by (2.56).

The normalization condition (3.3) leads to

(3.13)
$$x_n^- (1 + \sum_{k \neq \pm n} (z_n^+ - B_n)^{-1} (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)}(k)) + y_n^- \left(1 + \sum_{k \neq \pm n} (z_n^+ - B_n)^{-1} (\mathcal{S}^n \hat{V})_{\mathbb{Z}(n)}(k)\right) = 0,$$

which, in view of Proposition 2.11, (iv), (v), yields, as $n \geq 2n_2$ for $n \in \mathcal{M}$,

$$|x_{n}^{-}| \leq |y_{n}^{-}|(1 + \frac{1}{n} \| V \|) \frac{1}{1 - \frac{1}{n} \|V\|}$$

$$\leq |y_{n}^{-}| (1 + \frac{4\|V\|}{n}) \leq 3|y_{n}^{-}|,$$

and, similary,

$$|y_n^-| \le |x_n^-| \left(1 + \frac{4 \|V\|}{n}\right) \le 3|x_n^-|.$$

Using (3.14) and (3.15), one obtains from the normalization condition (3.3) the estimate

$$\label{eq:continuous} \tfrac{2}{3}|x_n^-|^2 \quad \leq \quad 2|x_n^-y_n^-| \ = \ |1 - \sum_{k \neq \pm n} \ a_{x_n^-,y_n^-,z_n^+} \ (k) a_{x_n^-,y_n^-,z_n^+}(-k)|$$

$$\leq 1 + \parallel a_{x_n^-, y_n^-, z_n^+} \parallel^2 \leq 1 + \frac{|x_n^-| + |y_n^-|}{2} \frac{\parallel V \parallel}{n} \leq 1 + 2|x_n^-| \frac{\parallel V \parallel}{n}.$$

It follows that for $n \geq 3n_2$,

$$|x_n^-| \le \sqrt{\frac{16}{10}} + \frac{2}{3} \frac{\parallel V \parallel}{n} \le 2.$$

Similarly, one can show that for $n \geq 3n_2$

$$|y_n^-| \le \sqrt{\frac{16}{10}} + \frac{2}{3} \frac{\parallel V \parallel}{n} \le 2.$$

Therefore, (3.13) leads to, using Proposition 2.11 (vi),

$$|x_n^- + y_n^-| \le \frac{4}{n} \| V \|,$$

and (3.2) implies, for $n \ge 3n_2$, using Proposition 2.11 (iii),

$$|2x_n^- y_n^- - 1| \le \left(\frac{4 \| V \|}{n}\right)^2 \le \frac{4 \| V \|}{n}.$$

Estimates (3.18) and (3.19) imply, with (3.5), $n \in \mathcal{M}$, $n \geq 3n_2$,

$$|x_n^- - \frac{i}{\sqrt{2}}| \le \frac{10 \parallel V \parallel}{n}; \quad |y_n^- + \frac{i}{\sqrt{2}}| \le \frac{10 \parallel V \parallel}{n}.$$

Using (3.2) and (3.4) and the above estimates, we conclude, by similar computations, that, for $n \in \mathcal{M}$ with $n \geq 20n_2$,

$$|x_{n}^{+}| \leq 3, \quad |x_{n}^{+} - \frac{1}{\sqrt{2}}| \leq \frac{200 \parallel V \parallel}{n};$$

$$|y_{n}^{+}| \leq 3, \quad |y_{n}^{+} - \frac{1}{\sqrt{2}}| \leq \frac{200 \parallel V \parallel}{n}.$$

For $n \in \mathcal{M}$, $n \geq 20n_2$, one obtains

$$\left(-\frac{d^2}{dx^2} + V - \tau_n\right) G_n^+ = \left(\lambda_n^+ - \tau_n\right) G_n^+ + \left(\hat{V}(-2n) + \beta(-n, z_n^+)\right) y_n^+ e^{-in\pi x} + \left(\hat{V}(2n) + \beta(n, z_n^+)\right) x_n^+ e^{in\pi x},$$

which leads to

$$\langle G_n^+, (-\frac{d^2}{dx^2} + V - \tau_n)G_n^+ \rangle$$

$$= (\hat{V}(2n) + \hat{V}(-2n))x_n^+ y_n^+ + x_n^+ y_n^+ (\beta(n, z_n^+) + \beta(-n, z_n^+))$$

$$= \frac{1}{2}(\hat{V}(2n) + \hat{V}(-2n)) + l_{N+1,\omega}^2(n)$$

and

$$\langle G_n^-, (-\frac{d^2}{dx^2} + V - \tau_n) G_n^+ \rangle$$

$$= x_n^- y_n^+ \hat{V}(-2n) + y_n^- x_n^+ \hat{V}(2n) + x_n^- y_n^+ \beta(-n, z_n^+) + y_n^- x_n^+ \beta(n, z_n^+)$$

$$= \frac{i}{2} (\hat{V}(-2n) - \hat{V}(2n)) + l_{N+1,\omega}^2(n),$$

where, by abuse of notation, we mean by $(l_{N+1,\omega}^2(n))_{n\geq 1}$ an element in $l_{N+1,\omega}^2$ uniformly bounded for $V\in\mathcal{U}$, where \mathcal{U} is a sufficiently small neighborhood of $V_0\in H_0^{N,\omega}(S^1,\mathbb{R})$ in $H_0^{N,\omega}(S^1;\mathbb{C})$. Using the above estimates, one obtains

Lemma 3.2. Assume that $V_0 \in H_0^{N,\omega}(S^1,\mathbb{R})$. Then there exist a neighborhood \mathcal{U} of V_0 in $H^{N,\omega}(S^1;\mathbb{C}), n_3 \geq n_2$ and $1 \leq C < \infty$ so that for $V \in \mathcal{U}$,

$$\sum_{\substack{n \geq n_3 \\ \lambda_n^+ = \lambda_n^-}} (1+n)^{2N+2} e^{2n\omega} \| \Phi_n(V) - \frac{(\hat{V}(2n) + \hat{V}(-2n))/2}{(\hat{V}(2n) - \hat{V}(-2n))/2i} \|^2 \leq C.$$

Let us now consider those $n \geq n_2$ with $\lambda_n^+ \neq \lambda_n^-$. Denote by f_n^{\pm} eigenfunctions of λ_n^{\pm} normalized so that

$$\sum_{k \in \mathbb{Z}} \hat{f}_n^{\pm}(k)^2 = 1 .$$

Then G_n^+ and G_n^- are linear combinations of f_n^+ and f_n^- ,

(3.22)
$$G_n^+ = \alpha_n^+ f_n^+ + \alpha_n^- f_n^-$$
$$= x_n^+ e^{-in\pi x} + y_n^+ e^{in\pi x} + \sum_{k \neq \pm n} b_n^+(k) e^{ik\pi x}$$

with

$$b_n^+ := \alpha_n^+ \hat{f}_n^+ (-n)(z_n^+ - B_n)^{-1} \mathcal{S}^n \hat{V} + \alpha_n^- \hat{f}_n^- (-n)(z_n^- - B_n)^{-1} \mathcal{S}^n \hat{V}$$
$$+ \alpha_n^+ \hat{f}_n^+ (n)(z_n^+ - B_n)^{-1} \mathcal{S}^{-n} \hat{V} + \alpha_n^- \hat{f}_n^- (n)(z_n^- - B_n)^{-1} \mathcal{S}^{-n} \hat{V}$$

and

(3.23)
$$G_n^- = \beta_n^+ f_n^+ + \beta_n^- f_n^-$$
$$= x_n^- e^{-in\pi x} + y_n^- e^{in\pi x} + \sum_{k \neq \pm n} b_n^-(k) e^{ik\pi x}$$

with b_n^- given by an expression similar to b_n^+ . For $V_0 \in L_0^2(S^1; \mathbb{R})$ there exist a neighborhood \mathcal{U} of V_0 in $L_0^2(S^1; \mathbb{C})$ and $n_3 \geq n_2$ so that for $n \ge n_3$ (cf. [BBGK, Lemma 4.10], [Ka, Proposition 8])

$$(3.24^{+}) x_n^{+} = \frac{1}{\sqrt{2}} + O(\frac{1}{n}), y_n^{+} = \frac{1}{\sqrt{2}} + O(\frac{1}{n}),$$

$$(3.24^{-}) x_n^{-} = \frac{i}{\sqrt{2}} + O(\frac{1}{n}), y_n^{-} = -\frac{i}{\sqrt{2}} + O(\frac{1}{n}),$$

$$(3.25^{+}) f_n^{+}(x) = \frac{e^{-i\theta_n}}{\sqrt{2}} e^{-in\pi x} + \frac{e^{i\theta_n}}{\sqrt{2}} e^{in\pi x} + O(\frac{1}{n}),$$

$$(3.25^{-}) f_n^{-}(x) = i \frac{e^{-i\theta_n}}{\sqrt{2}} e^{-in\pi x} - i \frac{e^{i\theta_n}}{\sqrt{2}} e^{in\pi x} + O(\frac{1}{n}).$$

As $\lambda_n^+ \neq \lambda_n^-$, the normalization conditions for G_n^{\pm} imply

$$(\alpha_n^+)^2 + (\alpha_n^-)^2 = 1, \ (\beta_n^+)^2 + (\beta_n^-)^2 = 1, \ \alpha_n^+ \beta_n^+ + \alpha_n^- \beta_n^- = 0,$$

which leads to

(3.26)
$$\alpha_n^+ = \frac{e^{i\theta_n} + e^{-i\theta_n}}{2} + O(\frac{1}{n}), \ \alpha_n^- = \frac{e^{i\theta_n} - e^{-i\theta_n}}{2i} + O(\frac{1}{n}),$$

(3.27)
$$\beta_n^+ = -\frac{e^{i\theta_n} - e^{-i\theta_n}}{2i} + O(\frac{1}{n}), \ \beta_n^- = \frac{e^{i\theta_n} + e^{-i\theta_n}}{2} + O(\frac{1}{n}).$$

When written in Fourier space, $(-\frac{d^2}{dx^2} + V - \tau_n)G_n^+$ takes the form (cf. (2.3))

(3.28)
$$\begin{pmatrix} -x_n^+(z_n^+ + z_n^-)/2 + y_n^+ \hat{V}(-2n) + \langle \mathcal{S}^n \mathcal{J} \hat{V}, b_n^+ \rangle \\ x_n^+ \hat{V}(2n) - y_n^+(z_n^+ + z_n^-)/2 + \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, b_n^+ \rangle \\ x_n^+ \mathcal{S}^n \hat{V} + y_n^+ \mathcal{S}^{-n} \hat{V} + (B_n - (z_n^+ + z_n^-)/2)b_n^+ \end{pmatrix}.$$

The terms appearing in this expression are discussed separately. Since $\alpha(n,z) = \alpha(-n,z)$, one obtains

$$\langle \mathcal{S}^{n} \mathcal{J} \hat{V}, b_{n}^{+} \rangle = \alpha_{n}^{+} \hat{f}_{n}^{+}(-n) \ \alpha(n, z_{n}^{+}) + \alpha_{n}^{-} \hat{f}_{n}^{-}(-n) \ \alpha(n, z_{n}^{-}) + \alpha_{n}^{+} \hat{f}_{n}^{+}(n) \ \beta(-n, z_{n}^{+}) + \alpha_{n}^{-} \hat{f}_{n}^{-}(n) \beta(-n, z_{n}^{-})$$

$$= x_{n}^{+} \frac{\alpha(n, z_{n}^{+}) + \alpha(n, z_{n}^{-})}{2} + x_{n}^{+} \frac{\alpha(n, z_{n}^{+}) - \alpha(n, z_{n}^{-})}{2} + \alpha_{n}^{-} \hat{f}_{n}^{-}(-n) (\alpha(n, z_{n}^{+}) - \alpha(n, z_{n}^{-}))$$

$$+ \alpha_{n}^{+} \hat{f}_{n}^{+}(n) \ \beta(-n, z_{n}^{+}) + \alpha_{n}^{-} \hat{f}_{n}^{-}(n) \beta(-n, z_{n}^{-}).$$

Taking into account that $-\zeta_n^{\pm} = -z_n^{\pm} + \alpha(n, z_n^{\pm})$ and thus

$$-\frac{z_n^+ + z_n^-}{2} \ + \ \frac{\alpha(n, z_n^+) + \alpha(n, z_n^-)}{2} \ = \ -\frac{\zeta_n^+ + \zeta_n^-}{2},$$

the first component in (3.28) can be written as

$$(3.30) -x_n^+ \left(\frac{z_n^+ + z_n^-}{2}\right) + y_n^+ \hat{V}(-2n) + \langle \mathcal{S}^n \mathcal{J} \hat{V}, b_n^+ \rangle = \hat{V}(-2n)y_n^+ + g_n^+(-n),$$

where

$$(3.31) g_n^+(-n) = (x_n^+ + \alpha_n^- \hat{f}_n^-(-n))(\alpha(n, z_n^+) - \alpha(n, z_n^-)) - x_n^+ \frac{\zeta_n^+ + \zeta_n^-}{2} + \alpha_n^+ \hat{f}_n^+(n)\beta(-n, z_n^+) + \alpha_n^- \hat{f}_n^-(n)\beta(-n, z_n^-).$$

In view of (3.24)–(3.27), Lemma 2.4(ii), Proposition 2.7 and Theorem 2.10 we conclude that $g_n^+(-n) = l_{N+1,\omega}^2(n)$, uniformly bounded for V in a sufficiently small neighborhood \mathcal{U} of V_0 in $H_0^{N,\omega}(S^1,\mathbb{C})$.

The second component in (3.28) is analyzed similarly, to yield

$$(3.32) x_n^+ \hat{V}(2n) - y_n^+ (z_n^+ + z_n^-)/2 + \langle \mathcal{S}^{-n} \mathcal{J} \hat{V}, b_n^+ \rangle = \hat{V}(2n) x_n^+ + g_n^+(n),$$

where

(3.33)
$$g_n^+(n) = (-y_n^+ + \alpha_n^+ \hat{f}_n^+(n)) \frac{\alpha(n, z_n^+) - \alpha(n, z_n^-)}{2} - y_n^+ \frac{\zeta_n^+ + \zeta_n^-}{2} + \alpha_n^+ \hat{f}_n^+(-n)\beta(n, z_n^+) + \alpha_n^- \hat{f}_n^-(-n)\beta(n, z_n^-),$$

and we again conclude that $g_n^+(-n) = l_{N+1,\omega}^2(n)$.

Finally we analyze the third component in (3.28):

We compute (with
$$\gamma_n := \lambda_n^+ - \lambda_n^-$$
)

$$(B_n - \frac{z_n^+ + z_n^-}{2})b_n^+ = -(\alpha_n^+ \hat{f}_n^+(-n) + \alpha_n^- \hat{f}_n^-(-n))\mathcal{S}^n \hat{V}$$

$$-(\alpha_n^+ \hat{f}_n^+(n) + \alpha_n^- \hat{f}_n^-(-n))\mathcal{S}^{-n} \hat{V}$$

$$+\alpha_n^+ \hat{f}_n^+(-n) \frac{\gamma_n}{2} (z_n^+ - B_n)^{-1} \mathcal{S}^n \hat{V}$$

$$+\alpha_n^- \hat{f}_n^-(-n) \frac{\gamma_n}{2} (z_n^- - B_n)^{-1} \mathcal{S}^n \hat{V}$$

$$+\alpha_n^+ \hat{f}_n^+(n) \frac{\gamma_n}{2} (z_n^+ - B_n)^{-1} \mathcal{S}^{-n} \hat{V}$$

$$+\alpha_n^- \hat{f}_n^-(n) \frac{\gamma_n}{2} (z_n^- - B_n)^{-1} \mathcal{S}^{-n} \hat{V}.$$

Thus

$$(3.34) x_n^+ \mathcal{S}^n \hat{V} + y_n^+ \mathcal{S}^{-n} \hat{V} + (B_n - \frac{z_n^+ + z_n^-}{2}) b_n^+$$

$$= \alpha_n^+ \hat{f}_n^+ (-n) \frac{\gamma_n}{2} (z_n^+ - B_n)^{-1} \mathcal{S}^n \hat{V}$$

$$+ \alpha_n^- \hat{f}_n^- (-n) \frac{\gamma_n}{2} (z_n^- - B_n)^{-1} \mathcal{S}^n \hat{V}$$

$$+ \alpha_n^+ \hat{f}_n^+ (n) \frac{\gamma_n}{2} (z_n^+ - B_n)^{-1} \mathcal{S}^{-n} \hat{V}$$

$$+ \alpha_n^- \hat{f}_n^- (n) \frac{\gamma_n}{2} (z_n^- - B_n)^{-1} \mathcal{S}^{-n} \hat{V}$$

$$= l_{N+1,\omega}^2(n).$$

Combining (3.30)-(3.34), we obtain, for $n \ge n_3$ with $\lambda_n^+ \ne \lambda_n^-$,

$$\langle G_n^+, (-\frac{d^2}{dx^2} + V - \tau_n) G_n^+ \rangle = \hat{V}(-2n)(y_n^+)^2 + \hat{V}(2n)(x_n^+)^2 + l_{N+1,\omega}^2(n),$$

$$\langle G_n^-, (-\frac{d^2}{dx^2} + V - \tau_n)G_n^+ \rangle = \hat{V}(-2n)x_n^-y_n^+ + \hat{V}(2n)y_n^-x_n^+ + l_{N+1,\omega}^2(n).$$

In view of (3.24^{\pm}) one then concludes the following:

Lemma 3.3. Assume $V_0 \in H^{N,\omega}(S^1;\mathbb{R})$. Then there exist a neighborhood \mathcal{U} of V_0 in $H^{N,\omega}(S^1;\mathbb{C})$, $n_3 \geq n_2$ and $1 \leq C < \infty$ such that for any $V \in \mathcal{U}$ and $n \geq n_3$

$$\sum_{\substack{n \geq n_3 \\ \lambda_n^+ \neq \lambda_n^-}} (1+n)^{2N+2} e^{2n\omega} \left\| \Phi_n(V) - \left(\frac{\hat{V}(2n) + \hat{V}(-2n)}{\hat{V}(2n) - \hat{V}(-2n)} \right) \right\|^2 \leq C.$$

Proposition 3.4. The map $\Phi^{(N,\omega)}: H_0^{N,\omega}(S^1) \to l_{N,\omega}^2(\mathbb{R}^2)$ has the following properties:

(i) $\Phi^{(N,\omega)}$ is bijective and real analytic;

(ii) $(\Phi^{(N,\omega)})^{-1}$ is real analytic;

Proof. As $\Phi^{(N,\omega)} = \Phi|_{H_0^{N,\omega}(S^1)}$ and $\Phi: L_0^2(S^1) \to l^2(\mathbb{R}^2)$ is bijective and bianalytic, we conclude that $\Phi^{(N,\omega)}$ is one-to-one and, for $V \in H_0^N(S^1)$, $d_V \Phi^{(N,\omega)}$ is also one-to-one. From Corollary 3, stated in the introduction, and the fact that Φ is onto we conclude that $\Phi^{(N,\omega)}$ is onto. By Proposition 3.1, $\Phi^{(N,\omega)}$ is real analytic. To prove statement (ii), it suffices to show that $d_V \Phi^{(N,\omega)}$ is onto for an arbitrary element V in $H_0^{N,\omega}(S^1)$. By (i) and the Fredholm alternative it suffices to prove that $d_V \Phi^{(N,\omega)} = A + K$, where $A: H_0^{N,\omega}(S^1) \to l_{N,\omega}^2(\mathbb{R}^2)$ is a linear isomorphism and K is a compact operator. This follows from Proposition 3.1.

Next we consider the map $\Lambda: L_0^2(S^1) \to l_{1/2}^2(\mathbb{R}^2)$, defined in [BBGK] by $\Lambda(V) = (\Lambda_n(V))_{n \geq 1}$ with $\Lambda_n(V) = \xi_n(V)\Phi_n(V)$. Here

$$\xi_n(V)^2 = \frac{2\mathcal{I}_n(V)}{\gamma_n(V)/2}$$

and $\mathcal{I}_n(V)(n \geq 1)$ denote the action variables of KdV with respect to the Gardner bracket ([FM]; cf. [BBGK])

$$\mathcal{I}_n(V) = \frac{2}{\pi} \int_{\lambda_{2n-1}}^{\lambda_{2n}} \mu \frac{\dot{\triangle}(\mu)}{(\triangle(\mu) - 4)^{1/2}} d\mu .$$

Define $\Lambda^{(N,\omega)}:=\Lambda\Big|_{H_0^{N,\omega}(S^1)}$. From the asymptotics, valid uniformly on sets of potentials bounded in $L_0^2(S^1;\mathbb{C})$.

(3.35)
$$\xi_n = \frac{1}{\sqrt{n\pi}} \left(1 + O(\frac{\log n}{n}) \right)$$

(cf. [BBGK]) we conclude that $\Lambda^{(N,\omega)}(H_0^{N,\omega}(S^1)) \subset l_{N+\frac{1}{2},\omega}^2$ (\mathbb{R}^2).

Proposition 3.5. The map $\Lambda^{(N,\omega)}: H_0^{N,\omega}(S^1) \to l_{N+\frac{1}{2},\omega}^2(\mathbb{R}^2)$ has the following properties:

- (i) $\Lambda^{(N,\omega)}$ is bijective and real analytic;
- (ii) $(\Lambda^{(N,\omega)})^{-1}$ is real analytic;
- (iii) for any $0 \le \varepsilon < 1/2$,

$$\Lambda_n^{(N,\omega)}(V) = \frac{1}{\sqrt{n\pi}} \left(\frac{\hat{V}(2n) + \hat{V}(-2n)}{2}, \ \frac{\hat{V}(2n) - \hat{V}(-2n)}{2i} \right) + l_{N+1+\varepsilon,\omega}^2(n)$$

uniformly on sets of potentials bounded in $H_0^{N,\omega}(S^1;\mathbb{C})$.

Proof. We argue as in the proof of Proposition 3.4 to conclude from [BBGK, section 2] that $\Lambda^{(N,\omega)}$ is bijective and real analytic and that $d_V\Lambda^{(N,\omega)}$ is one-to-one for any $V \in H_0^{N,\omega}(S^1)$. Statement (iii) follows from (3.35) and Proposition 3.1. To prove statement (ii) it suffices to prove that $d_V\Lambda^{(N,\omega)}$ is onto for any V in $H_0^{N,\omega}(S^1)$.

Write

$$(3.36) d_V \Lambda_n(W) = \xi_n(V) d_V \Phi_n(W) + d_V \xi_n(W) \Phi_n(V)$$

and introduce, for V fixed,

$$A := (A_n)_{n \ge 1} : H_0^{N,\omega}(S^1) \to l_{N+\frac{1}{2},\omega}^2(\mathbb{R}^2)$$

with $A_n(W) := \frac{1}{\sqrt{n\pi}} d_V \Phi_n$ (W). By Proposition 3.4, A is a linear isomorphism. Moreover, by [BBGK, Lemma 4.18], for any $0 \le \varepsilon < 1/2$,

(3.37)
$$d_V \, \xi_n(W) = O(\frac{1}{n^{1+\varepsilon}}) \parallel W \parallel_{L^2}.$$

Substituting (3.35) and (3.37) into (3.36), we conclude that, for any $0 \le \varepsilon < 1/2$, there exists $C_{\varepsilon} > 0$ such that

$$\| (d_V \Lambda_n(W) - A_n(W))_{n > 1} \|_{l^2_{N+1+\varepsilon,\omega}} \le C_{\varepsilon} \| W \|_{L^2}.$$

Estimate (3.21) implies that $d_V \Lambda^{(N,\omega)} = A + K$, where K is compact. By the Fredholm alternative and the fact that $d_V \Lambda^{(N,\omega)}$ is one-to-one, we conclude that $d_V \Lambda^{(N,\omega)}$ is onto. This implies statement (ii).

Proof of Theorem 1. Theorem 1 follows from Proposition 3.5.

References

- [BBGK] D. Bättig, A. Bloch, J.-C. Guillot, T. Kappeler; On the symplectic structure of the phase space for periodic KdV, Toda and defocusing NLS, Duke Math. J. 79 (1995), 549–604. MR 96i:58065
- [BKM1] D. Bättig, T. Kappeler, B. Mityagin, On the Korteweg-de Vries equation: convergent Birkhoff normal form, J. Funct. Anal. 140 (1996), 335–358. MR 97g:58073
- [BKM2] D. Bättig, T. Kappeler, B. Mityagin, On the Korteweg-de Vries equation: frequencies and initial value problem, Pacific J. Math. 181 (1997), 1–55. CMP 98:06
- [Bo] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: KdV-equation, Geom. Funct. Anal. 3 (1993), 209–262. MR 95b:35160b
- [DKN] B.A. Dubrovin, I.M. Krichever, S.P. Novikov, Integrable systems I, in Dynamical Systems IV, ed. V.I. Arnold, S.P. Novikov, Encycl. of Math. Sci., Springer Verlag, 1990. MR 87k:58112
- [FM] H. Flaschka, D. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progress of Theor. Phys. 55 (1976), 438–456. MR 53:7179
- [Ka] T. Kappeler, Fibration of the phase-space for the Korteweg-de Vries equation, Ann. Inst. Fourier 41 (1991), 539–575. MR 92k:58212
- [Ma] V.A. Marčenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986. MR 88f:34034
- [MT1] H. P. McKean, E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 24 (1976), 143– 226. MR 55:761
- [MT2] H.P. McKean, E. Trubowitz, Hill's surfaces and their theta functions, Bull. AMS, 84 (1978), 1042–1085. MR 80b:30039
- [PT] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987. MR 89b:34061

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

E-mail address: tk@math.unizh.ch

Department of Mathematics, Ohio State University, Columbus, Ohio $43210\,$

 $E ext{-}mail\ address: borismit@math.ohio-state.edu}$